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Abstract
This thesis considers the study of data structures from the perspective of the theoretician,
with a focus on simplicity and practicality. We consider both the time complexity as well
as space usage of proposed solutions. Topics discussed fall in three main categories: partial
order representation, range modes, and graph cuts.

We consider two problems in partial order representation. The first is a data structure
to represent a lattice. A lattice is a partial order where the set of elements larger than
any two elements x and y are all larger than an element z, known as the join of x and y;
a similar condition holds for elements smaller than any two elements. Our data structure
is the first correct solution that can simultaneously compute joins and the inverse meet
operation in sublinear time while also using subquadratic space. The second is a data
structure to support queries on a dynamic set of one-dimensional ordered data; that is,
essentially any operation computable on a binary search tree. We develop a data structure
that is able to interpolate between binary search trees and efficient priority queues, offering
more-efficient insertion times than the former when query distribution is non-uniform.

We also consider static and dynamic exact and approximate range mode. Given one
dimensional data, the range mode problem is to compute the mode of a subinterval of
the data. In the dynamic range mode problem, insertions and deletions are permitted.
For the approximate problem, the element returned is to have frequency no less than a
factor (1 + ε) of the true mode, for some ε > 0. Our results include a linear-space dynamic
exact range mode data structure that simultaneously improves on best previous operation
complexity and an exact dynamic range mode data structure that breaks the Θ(n2/3)
time per operation barrier. For approximate range mode, we develop a static succinct
data structure offering a logarithmic-factor space improvement and give the first dynamic
approximate range mode data structure. We also consider approximate range selection.

The final category discussed is graph and dynamic graph algorithms. We develop an
optimal offline data structure for dynamic 2− and 3− edge and vertex connectivity. Here,
the data structure is given the entire sequence of operations in advance, and the dynamic
operations are edge insertion and removal. Finally, we give a simplification of Karger’s
near-linear time minimum cut algorithm, utilizing heavy-light decomposition and iteration
in place of dynamic programming in the subroutine to find a minimum cut of a graph G
that cuts at most two edges of a spanning tree T of G.
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Chapter 1

Introduction

The design of efficient data structures is a classic topic within the field of theoretical com-
puter science. Efficient data structures are fundamental to efficient algorithms, but also
frequently find use in applications directly, such as in database systems. Most program-
ming language standard libraries contain implementations of basic data structures, and
frequently in production code, these libraries see extensive use. In performance-critical
applications, even very minor improvements in data structure efficiency can lead to very
important performance gains. For these reasons, the design of efficient data structures is
uniquely important to the theory and practice of computing systems.

This thesis focuses on the study of data structures from the perspective of the theoreti-
cian. By studying data structures with worst-case guarantees, fundamental mathematical
properties can be discovered. In many circumstances, these theoretically superior data
structures can lead to improved practical implementations.

Data structures are evaluated on three metrics:

1. The time complexity of the supported operations.

2. The space complexity of the data structure.

3. The time it takes to construct the data structure.

This thesis will consider all three metrics. The greatest attention will be given to time
complexity of supported operations. In chapters 2, 4, and 6, the space complexity will be
equally important. Construction costs are analyzed in chapters 2, 3, and 4.

Algorithms relating to data structures are also considered. In Chapter 7, an offline data
structure is given. This data structure assumes access to the entire operation sequence in
advance. In Chapter 8, an algorithm is given based on data structure concepts, which
further abstracts necessary computation onto another data structure.
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The topics discussed fall into three main categories: partial order data structures
(Part I), range mode data structures (Part II), and graph and dynamic graph algorithms
(Part III). While the topics discussed have relatively minor overlap, the technical intuition
as well as guiding principles are shared.

In general, the solutions developed value simplicity over theoretical efficiency. Most of
the main ideas of this thesis can be explained at an undergraduate computer science level.
Further attention is given to practicality. This affects both the algorithms developed as
well as the problems considered. The problems considered are some of the most natural:
representing unknown total orders, computing modes, and computing minimum cuts. The
less constrained the problem, the more likely it is to be of relevance.

With regards to computation model, we use both the word RAM and the pointer
machine, depending on the chapter. In the word RAM, we can compute bitwise operations
on Θ(logn)-bit words in O(1) time (in this thesis we will always assume a word to be
Θ(logn) bits) and have random access to memory in constant time. In the pointer machine,
we lose array access, instead representing data as a node with a constant number of pointers
that can be followed in constant time. In general we assume arithmetic and other reasonable
functions are computable in O(1) time. We use the full power of the word RAM typically
only indirectly, in succinct data structures in Chapter 6 and van Emde Boas trees [230] in
Chapter 4. In particular, we do not make use of bit tricks to shave off partial logarithmic
or doubly logarithmic factors. We do this to maintain relative practicality. The black-
box data structures that do use such tricks can be substituted, if desired, with slower
comparison-based data structures on the pointer machine. When the word RAM is used,
most of our results give polynomial Ω(nc) for 0 < c < 1 improvements which are not affected
by the power of word RAM, which can give at most a Θ(logn) speedup.

We discuss the specific contents of this thesis in the following three sections.

1.1 Partial Order Data Structures
The representation of partial orders is at the heart of data structure design. Binary search
trees, perhaps the most fundamental data structure in computer science, represent an
initially unknown total order. Directed acyclic graphs can be interpreted as representations
of partial orders by their reachability relations. In algebra, we can create partial orders
on common sets such as the integers, by considering divisibility relations, or subsets of a
universe, ordering by inclusion. We consider data structures to represent unknown total
orders in Chapter 3 and data structures to represent lattices, such as those just mentioned,
in Chapter 2.
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1.1.1 Lattice Data Structures

We first consider data structures to represent a specific type of partial order known as
a lattice. A lattice is a partial order such that for every pair of elements x and y, the
set of elements greater than both x and y are all greater than (or equal to) a unique
element x ∨ y, known as the join of x and y. Similarly, the set of elements less than both
x and y are all less than (or equal to) a unique element x ∧ y, known as the meet of x
and y. Lattices arise in many areas of mathematics, the social sciences, and programming
languages [122, 235, 109, 180, 191, 7, 49, 50, 165]. The integers, ordered by divisibility,
are a lattice, as are a collection of subsets closed under intersection and union, ordered by
inclusion.

The lattice problem asks to create a data structure to represent lattices that can effi-
ciently determine if an order relation exists between two elements x and y and to compute
the meet and join of x and y. The goal is to use as little space as possible.

Initial work in lattice data structures was heuristic [7]. The problem was then studied
theoretically by Talamo and Vocca in a series of papers in the 90’s [221, 222, 223]. Un-
fortunately, the data structures proposed by Talamo and Vocca have a fundamental error
that appears irreparable. We study the issue with their work and present a data structure
that takes O(n√n) words of space (O(n√n logn) bits), computes order relations in O(1)
time, and computes meets and joins in O(n3/4) time. Here we assume a word RAM, where
our use of this model is only to get O(1) time dictionary lookup. We also give time-space
tradeoffs, construction costs, and a data structure with complexity characterized by a con-
cept of degree on a minimal graph representation of the partial order. This is discussed in
Chapter 2.

1.1.2 Lazy Search Trees

Binary search trees are perhaps the most fundamental data structure in computer science.
Research on binary search trees (BSTs) has primarily focused on developing BSTs with
efficient access times. Specifically, dynamic optimality research looks for a BST that per-
forms any access sequence in time within a constant factor of the offline-optimal BST.
Although Ω(logn) is the worst-case time complexity of a single access, on an operation
sequence such as repeatedly accessing a single element, binary search trees can perform
this sequence in about O(1) time per access by storing said element at or near the root.
This subarea has received vast attention [8, 67, 68, 143, 35, 218, 234, 164, 52, 142, 16].

Instead of focusing on efficient access times when possible, lazy search trees consider the
problem of achieving efficient insertion times when the operation sequence permits such
efficiency. The main insight is that priority queues have been developed with O(1) time
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insertion and decrease-key operations [99, 101, 53, 46, 82, 128, 41, 129]; thus, on certain
operation sequences (like when we only query for the minimum element), it is possible to
support insertion in o(logn) time. Despite the plethora of research on BSTs with efficient
access times, our work is the first to ask whether a data structure supporting the operations
of a BST can achieve efficient insertion time. Our data structure is not a binary search
tree, however. In order to avoid Ω(logn) insert time, we delay sorting of inserted elements,
employing structures similar to those used in priority queue literature, operating over a
pointer machine. We don’t see this as a disadvantage; the goal of the algorithm designer is
to solve problems efficiently; in this case we observe that constraining to a model of binary
search trees is an arbitrary limitation to the most efficient solutions.

We analyze the performance of our data structure based on a partition of current
elements into a set of gaps {∆i} based on rank. A query falls into a particular gap and
splits the gap into two new gaps at a rank r associated with the query operation (BST
queries such as rank, select, membership, predecessor, successor, minimum, and maximum
are supported). If we define B = ∑i ∣∆i∣ log2(n/∣∆i∣), our performance over a sequence of n
insertions and q distinct queries is O(B +min(n log logn,n log q)). We show B is a lower
bound.

The bound B satisfies B = O(n log q); when queries are non-uniform, better bounds are
possible. In the priority queue case, our data structure achieves O(log logn) time insertion
and decrease-key operations, thus interpolating between binary search trees and priority
queues. We show that we can achieve this while simultaneously achieving the desirable
efficient access properties that have been studied in dynamic optimality literature. We
discuss precise performance guarantees and other useful properties of lazy search trees in
Chapter 3.

1.2 Range Mode
In the range mode problem, we are given a sequence of elements and must answer queries
that request the most frequent element in a contiguous subsequence. If the problem is
dynamic, we must also support insertion and deletion of elements in the sequence.

The mode is one of the three fundamental data statistics, along with median and
mean, and range mode is one of few basic range problems that have not been solved
optimally. Indeed, upper bounds remain quite large: linear space static range mode requires
time about O(√n) per query and dynamic range mode about O(n2/3) per operation [55],
compared to range problems such as sum, minimum, median, or majority, which permit
logarithmic time static solutions and polylogarithmic time or better dynamic solutions,
even when space is restricted to O(n) words [102, 44, 83, 200, 57, 131, 104, 83].
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We consider a dynamic range mode data structure that slightly improves operation
time while simultaneously improving space usage in Chapter 4. In Chapter 5, we break
the O(n2/3) time per operation barrier for dynamic range mode. In Chapter 6, we consider
succinct data structures for approximate static range mode, approximate dynamic range
mode, and approximate static range selection. All data structures in this part of the thesis
operate on the word RAM. In Chapter 4, we use only standard operations with constant
time array access as well as more powerful blackbox word RAM data structures non-central
to our results. In Chapter 5 we measure performance ignoring logarithmic factors, so this
distinction is not important. Chapter 6 requires the word RAM model more centrally.

1.2.1 Space-Efficient Dynamic Range Mode

The first dynamic range mode data structure was proposed by Chan et al. [55] and
operated on a time-space continuum, achieving O(n3/4 logn/ log logn) worst-case time
query and O(n3/4 log logn) amortized expected time update at O(n) words of space and
O(n2/3 logn/ log logn) worst-case time query and amortized expected time update atO(n4/3)
words of space.

We improve both operation time and space usage by providing a data structure with
O(n2/3) worst-case time query and update while occupying O(n) words of space. Our
data structure can also be generalized to find the least frequent element in a range or an
element of a particular frequency, with some restrictions. We discuss these data structures
in Chapter 4.

1.2.2 Faster Dynamic Range Mode

Several different approaches can achieve a dynamic range mode data structure with Õ(n2/3)
time operations, where the Õ(⋅) notation hides logarithmic factors. A conditional lower
bound from the online matrix-vector multiplication problem [132] states that a dynamic
range mode data structure taking O(n1/2−ε) time per operation for ε > 0 is not possible
with current knowledge [55]. This leaves a gap of about Θ(n1/6) between the lower and
upper bound.

We tighten this gap and break the O(n2/3) time per operation barrier by presenting
a data structure with per-operation complexity of about Õ(n.656). Our result reduces to
a Min-Plus product, which in turn reduces to fast matrix multiplication. We discuss this
work in Chapter 5.
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1.2.3 Approximate Succinct Range Mode and Range Selection

For any ε ∈ (0,1), fixed at construction time, a (1+ε)-approximate range mode query asks
for the position of an element whose frequency in the query range is at most a factor (1+ε)
smaller than the true mode. The best static approximate range mode data structure prior
to our work was a result by Greve et al. [123] which achieves O(log(1/ε)) query time while
using O(n/ε) words of space. We improve this result by moving to a succinct encoding
model, where we build the data structure off the input, then require only the data structure
to answer queries. Our data structure achieves O(log(1/ε)) query time while using only
O(n/ε) bits of space, which is a Θ(logn) factor reduction in space usage.

We also consider dynamic approximate range mode. Our data structure is the first
dynamic approximate range mode data structure. For any fixed constant ε, it achieves
O(logn/ log logn) query time, O(logn) update time, and occupies O(n) words of space.
Finally, we consider approximate range selection. We discuss these results in Chapter 6.

1.3 Graph and Dynamic Graph Algorithms
The final part of this thesis is dedicated to graph and dynamic graph algorithms. There
has been a large amount of recent work on data structures to compute queries in dynamic
graphs, particularly connectivity queries [84, 85, 86, 148, 137, 138, 141, 149, 172, 226, 241].
Connectivity has been studied both because it is fundamental and simple, with the latter
property permitting efficient dynamic solutions. Connectivity can be extended to c-edge
connectivity, which queries the existence of c edge-disjoint paths between two vertices of
a graph, or c-vertex connectivity, which queries the existence of c vertex-disjoint paths.
Algorithms and data structures for these higher versions of connectivity are related to
the notion of a graph cut, which is a set of edges or vertices whose removal disconnects a
graph. Graph cuts are fundamental to the minimum cut problem, to which an algorithm
we originally devised for a dynamic graph data structure provides a simpler near-linear
time weighted minimum cut algorithm. We study an offline dynamic data structure for
c ≤ 3 edge and vertex connectivity in Chapter 7 and a simpler algorithm for the minimum
cut problem in Chapter 8.

1.3.1 Offline Dynamic Higher Connectivity

Consider the problem of answering 2- and 3-edge and vertex connectivity queries in a graph
undergoing edge insertion and deletion. In the typical data structure model, a query must
be answered before the next operation is given. In this setting, known as the online model,
data structures for 3-edge and 3-vertex connectivity require O(n2/3) and O(n) time per
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update, respectively [85]. Consider, however, a situation where the complete sequence of
updates and queries is known in advance. This may happen directly, when data about a
dynamic network is collected but not analyzed until a later point in time, or indirectly,
if the algorithm is used as a subroutine of a different algorithm. In this setting, known
as the offline setting, simpler and more efficient algorithms are possible. We give such
an offline data structure for 2,3-edge/vertex connectivity that takes O(logn) time per
operation, which is optimal due to the dynamic connectivity lower bound of Patrascu and
Demaine [197]. We discuss this in Chapter 7.

1.3.2 Minimum Cuts

The weighted minimum cut problem on an undirected graph G asks to partition the vertices
of G into two sets such that the total weight of edges crossing the partition is minimized.
This problem is fundamental in graph optimization and has seen vast attention [153, 103,
205, 150, 155, 121, 228, 145, 59, 133, 51, 152, 113, 158, 134, 64, 112, 187, 220, 114].

At the time of our first study of the problem, the state-of-the-art weighted minimum
cut algorithm was a result of Karger which finds a minimum cut on a graph with n vertices
and m edges in O(m log3 n) time [153]. Karger’s algorithm leverages random sampling and
tree packing to reduce the problem to finding a minimum cut that cuts at most two edges
of a spanning tree T of a graph G. Karger then employs a complicated dynamic program
which solves the reduced problem in O(m log2 n) time.

We observed that a routine we originally devised for dynamic graph data structures sim-
plified Karger’s dynamic program to a straightforward edge iteration utilizing heavy-light
decomposition [218]. With the use of a top tree [10], we achieve O(m log2 n) complexity
on the subroutine, matching Karger’s approach. If we want to avoid the use of advanced
data structures, heavy-light decomposition can be used a second time with a standard
augmented binary search tree to achieve O(m log3 n) time complexity. We further con-
dense Karger’s algorithm to a self-contained version and implement it. We discuss this in
Chapter 8.
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Part I

Partial Order Data Structures
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Chapter 2

Space-Efficient Data Structures for
Lattices

2.1 Introduction
A lattice is a partially-ordered set with the property that for any pair of elements x and
y, the set of all elements greater than or equal to both x and y must contain a unique
minimal element less than all others in the set. This element is called the join (or least
upper bound) of x and y. A similar condition holds for the set of all elements less than both
x and y: It must contain a maximum element called the meet (or greatest lower bound) of
x and y.

We consider lattices from the perspective of succinct data structures. This area of
study is concerned with representing a combinatorial object in essentially the minimum
number of bits while supporting the “natural” operations in constant time. The minimum
number of bits required is the logarithm (base 2) of the number of such objects of size
n, e.g. about 2n bits for a binary tree on n nodes. Succinct data structures have been
very successful in dealing with trees, planar graphs, and arbitrary graphs. Our goal in this
chapter is to broaden the horizon for succinct and space-efficient data structures and to
move to more algebraic structures. There has indeed been progress in this direction with
abelian groups [91] and distributive lattices [184]. We take another step here in studying
space-efficient data structures for arbitrary finite lattices.

Lattices have a long and rich history spanning many disciplines. Existing at the inter-
section of order theory and abstract algebra, lattices arise naturally in virtually every area
of mathematics [122]. The area of formal concept analysis is based on the notion of a con-
cept lattice. These lattices have been studied since the 1980s [235] and have applications in

9



linguistics, data mining, and knowledge management, among many others [109]. Lattices
have also found numerous applications in the social sciences [180].

Within computer science, lattices are also important, particularly for programming
languages. Lattice theory is the basis for many techniques in static analysis of programs,
and thus has applications to compiler design. Dataflow analysis and abstract interpretation,
two major areas of static analysis, rely on fixed-point computations on lattices to draw
conclusions about the behaviour of a program [191].

Lattice operations appear in the problem of hierarchical encoding, which is relevant to
implementing type inclusion for programming languages with multiple inheritance (among
other applications) [7, 49, 50, 165]. Here the problem is to represent a partially-ordered
set by assigning a short binary string to each element so that lattice-like operations can be
implemented using bitwise operations on these strings. The goal is to minimize the length
of the strings for the sake of time and space efficiency.

In short, lattices are pervasive and worthy of study. From a data structures perspective,
the natural question follows: How do we represent a lattice so that not too much space is
required and basic operations like partial order testing, meet, and join can be performed
quickly?

It was proven by Klotz and Lucht [161] that the number of different lattices on n
elements is at least 2Ω(n3/2), and an upper bound of 2O(n3/2) was shown by Kleitman and
Winston [160]. Thus, any representation for lattices must use Ω(n3/2) bits in the worst
case, and this lower bound is tight within a constant factor. We should then expect a data
structure for lattices to use comparably little space.

Two naive solutions suggest themselves immediately. First, we could simply build a
table containing the meet and join of every pair of elements in the given lattice. Any simple
lattice operation could be performed in constant time. However, the space usage would be
quadratic — a good deal larger than the lower bound. Alternatively, we could store only the
transitive reduction graph of the lattice. This method turns out to be quite space-efficient:
Since the transitive reduction graph of a lattice can only have O(n3/2) edges [161, 240], the
graph can be stored in O(n3/2 logn) bits of space; thus, the space complexity lies within a
Θ(logn) factor of the lower bound. However, the lattice operations become extremely slow
as they require exhaustively searching through the graph. Indeed, it is not easy to come
up with a data structure for lattices that uses less than quadratic space while answering
meet, join, and partial order queries in less than linear time in the worst case.

The construction of a lattice data structure with good worst-case behaviour also has
attractive connections to the more general problem of reachability in directed acyclic graphs
(DAGs). Through its transitive reduction graph, a lattice can be viewed as a special type
of DAG. Among other things, this chapter shows that we can support reachability queries
in constant time for this class of graphs while using subquadratic space. Most classes of
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DAGs for which this has been achieved, such as planar DAGs [227], permit a strong bound
on the order dimension of the DAGs within that class. Order dimension of a partial order
P is the minimum number of total orders T1, . . . , T` such that x < y in P if and only if x < y
in each of T1, . . . , T`. Lattices do not permit a strong bound on order dimension; they can
have order dimension linear in the size of the lattice. A long-standing difficult problem in
this line of research is to show a similar nontrivial result for the case of arbitrary sparse
DAGs [199].

There has been significant progress in representation of distributive lattices, an espe-
cially common and important class of lattices. Space-efficient data structures for distribu-
tive lattices have been established since the 1990s [126, 127] and have been studied most
recently by Munro and Sinnamon [184]. Munro and Sinnamon show that it is possible
to represent a distributive lattice on n elements using O(n logn) bits of space while sup-
porting meet and join operations (and thus partial order testing) in O(logn) time. This
comes within a Θ(logn) factor of the space lower bound by enumeration: As the number
of distributive lattices on n elements is 2Θ(n) [87], at least Θ(n) bits of space are required
for any representation.

The problem of developing a space-efficient data structure for arbitrary lattices was
first studied by Talamo and Vocca in 1994, 1997, and 1999 [221, 222, 223]. They claimed
to have an O(n3/2 logn)-bit data structure that supports partial order queries in constant
time and meet and join operations in O(√n) time. However, there is a nontrivial error in
the details of their structure. Although much of the data structure is correct, we believe
that this mistake is a critical flaw that is not easily repaired.

To our knowledge, no other data structures have been proposed that can perform lattice
operations efficiently while using less than quadratic space. Our primary motivation is to
fill this gap.

2.2 Contributions
Drawing on ideas from [223], we present new data structures for lattices that are simple,
efficient for the natural lattice operations, and nearly optimal in space complexity. Our
data structures support three queries:

• Test Order: Given two elements x and y, determine whether x ≤ y in the lattice
order.

• Find Meet: Find the meet of two elements.

• Find Join: Find the join of two elements.
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Our first data structure (Theorem 9) is based on a two-level decomposition of a lattice
into many smaller lattices. It tests the order between any two elements in O(1) time and
answers meet and join queries in O(n3/4) time in the worst case. It uses O(n3/2) words
of space1, which is a Θ(logn) factor from the known lower bound of Ω(n3/2) bits. The
preprocessing time is O(n2).

We generalize this structure (Corollary 10) to allow for a tradeoff between the time
and space requirements. For any c ∈ [1

2 ,1], we give a data structure that supports meet
and join operations in O(n1−c/2) time, occupies O(n1+c) space, and can be constructed in
O(n2 + n1+3c/2) time. At c = 1/2, it coincides with the first data structure.

Taking a different approach to computing meets and joins, we present another data
structure (Theorem 12) based on a recursive decomposition of the lattice. Here the op-
erational complexity is parameterized by the maximum degree d of any element in the
lattice, where the degree is defined in reference to the transitive reduction graph of the
lattice. This structure answers meet and join queries in O(d logn

log d ) time, which improves
significantly on the first data structure when applied to lattices with low degree elements
(as is the case for distributive lattices, for example). It uses O(n3/2) space.

This chapter is organized as follows. In Section 2.3, we give the necessary definitions
and notation used throughout the chapter. In Section 2.4, we give the main tool we use
to decompose a lattice, which we call a block decomposition. Section 2.5 describes the
order-testing data structure and Section 2.6 extends this data structure to compute meets
and joins. Some details of the preprocessing are left to Section 2.7. Section 2.8 contains
our recursive degree-bounded data structure. In Section 2.9, we discuss the error in the
papers [222, 223] and give some evidence of why it may be irreparable.

2.3 Preliminaries
Given a partially-ordered set (poset) (P,≤), we define the downset of an element x ∈ P by
↓x = {z ∈ P ∣ z ≤ x} and the upset of x by ↑x = {z ∈ P ∣ z ≥ x}.

Definition 1. A lattice is a partially-ordered set (L,≤) in which every pair of elements
has a meet and a join.

The meet of x and y, denoted x ∧ y, is the unique maximal element of ↓x ∩ ↓ y with
respect to ≤. Similarly, the join of x and y, denoted x ∨ y, is the unique minimal element
of ↑x ∩ ↑ y.

1We assume a word RAM model with Θ(logn)-bit words. Henceforth, unless bits are specified, “f(n)
space” means f(n) words of size Θ(logn).
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Meet (∧) and join (∨) are also called greatest lower bound (GLB) and least upper bound
(LUB), respectively. Lattices have the following elementary properties [66]. Let x, y, z ∈ L.

• The meet and join operations are idempotent, associative, and commutative:

x ∨ x = x x ∨ (y ∨ z) = (x ∨ y) ∨ z x ∨ y = y ∨ x
x ∧ x = x x ∧ (y ∧ z) = (x ∧ y) ∧ z x ∧ y = y ∧ x

• If x ≤ y, then x ∧ y = x and x ∨ y = y.

• If z ≤ x and z ≤ y, then z ≤ x ∧ y. If z ≥ x and z ≥ y, then z ≥ x ∨ y.

• A lattice must have a unique top element above all others and unique bottom element
below all others in the lattice order.

Moreover, meet and join are dual operations. If the lattice is flipped upside-down, then
meet become join and vice versa.

In this chapter, we prefer to work with partial lattices. A partial lattice is the same as a
lattice except that it does not necessarily have top or bottom elements. Thus, the meet or
join of two elements may not exist in a partial lattice; we use the symbol null to indicate
this. We write x ∧ y = null if ↓x ∩ ↓ y = ∅ and x ∨ y = null if ↑x ∩ ↑ y = ∅. Note that in
a partial lattice the meet or join of x and y may not exist, but when they do exist they
must be unique.

Equivalently, a partial lattice is a partially-ordered set satisfying the lattice property :
If there are four elements x1, x2, y1, and y2 such that x1, x2 < y1, y2, then there must exists
an intermediate element z with x1, x2 ≤ z ≤ y1, y2. See Figure 2.1. This statement trivially
follows from the definition of a lattice; it only says that there cannot be multiple maximal
elements in ↓ y1 ∩ ↓ y2 or multiple minimal elements in ↑x1 ∩ ↑x2.

Henceforth, we use the term “lattice” to mean “partial lattice”. The difference is trivial
in a practical sense, and our results are easier to express when we only consider partial
lattices.

We assume that any lattice we wish to represent is given initially its transitive reduction
graph (TRG). This is a directed acyclic graph (DAG) having a node for each lattice element
and an edge (u, v) whenever u < v and there is no intermediate node w such that u < w < v.
The edge relation of this graph is called the covering relation: Whenever (u, v) is an edge
of the TRG we say that v covers u.

13



x1 x2

y1 y2 y1 y2

x1x2

z

Figure 2.1: The configuration on the left cannot exist in a lattice for any nodes x1, x2,
y1, and y2. There must be a node z between them as shown. We refer to this as the lattice
property.

2.4 Block Decompositions
The main tool used in our data structure is called a block decomposition of a lattice. It is
closely based on techniques used by Talamo and Vocca in [222, 223].

Let L be a lattice with n elements. A block decomposition of L is a partition of
the elements of L into subsets called blocks. The blocks are chosen algorithmically using
the following method. We first specify a positive integer k to be the block size of the
decomposition (our application will use the block size

√
n). Then we label the elements of

L as “fat” or “thin” according to the sizes of their downsets. A fat node is “minimal” if all
elements in its downset, except itself, are thin. Formally:

Definition 2. A node x ∈ L is called fat if ∣ ↓x∣ ≥ k, and x is called thin if ∣ ↓x∣ < k. We
say x is a minimal fat node if x is fat and every other node in ↓x is thin.

Minimal fat nodes are the basis for choosing blocks, which is done as follows. While
there exists a minimal fat node h in the lattice, create a new principal block B containing
the elements of ↓h, and then delete those nodes from the lattice. The node h is called the
block header of B.

Deleting the elements of B may cause some fat nodes to become thin by removing
elements from their downsets; this should be accounted for before choosing the next block.
When there are no fat nodes in the lattice, put the remaining elements into a single block
Bres called the residual block.

This method creates a set of principal blocks {B1,B2, . . . ,Bm} and a residual block
Bres. Each principal block Bi has a block header hi, which was the minimal fat node used
to create Bi. A block header is always the top element within its block. The residual
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Figure 2.2: (a) A minimal fat node h is used as a block header during the decomposition.
The downset of h is removed and the process repeats on L ∖ ↓h. (b) A block decomposition
yields a set of disjoint principal blocks, each having a block header. The residual block
consists of the lattice elements that are not below any block header.

block may or may not have a top element, but it is not considered to have a block header
regardless. Figure 2.2 shows a full block decomposition.

The block decomposition algorithm is summarized in Algorithm 1; it will be shown later
that this algorithm can be implemented to run in O(n7/4) time, where n is the number of
elements in the lattice.

Algorithm 1 Block Decomposition (Intuitive Version)
Require: A partial lattice L on n elements and a positive integer k.
Ensure: A block decomposition of L with block size k.
1: i = 1
2: while there exists a minimal fat node h do
3: Bi = ↓h ∩L
4: L = L ∖Bi

5: i = i + 1
6: Bres = L
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Properties of Block Decompositions

Let us note some elementary properties of block decompositions. Let L be a lattice with
n elements.

• Every element of the lattice lies in exactly one block.

• There can be at most n/k principal blocks as each one has size between k and n.
Consequently, there are at most n/k block headers.

• Since the block headers are chosen to be minimal fat nodes, every other element is
thin relative to the block it lies in. That is, if x lies in a block B and x is not the
block header of B, then ∣ ↓x ∩B∣ < k.

The last fact motivates the following term, which we will use frequently.

Definition 3. The local downset of an element x is the set ↓x ∩B, where B is the block
containing x.

Restated, the last property listed above says that the local downset of any element that
is not a block header has size less than k. We also note that if h is the block header of a
principal block B, then the local downset of h is B.

Somewhat less obvious is the following lemma.

Lemma 4. Every block is a partial lattice.2

Proof. The lemma follows from two facts.

1. The downset of any element in a partial lattice is also a partial lattice.

2. If the downset of an element is removed from a partial lattice, then the remaining
elements still form a partial lattice.

We prove the first fact. Let h be an element of a partial lattice L. We prove that the
poset ↓h satisfies the lattice property (see Figure 2.1). Suppose there are four elements
x1, x2, y1, y2 ∈ ↓h such that x1, x2 < y1, y2. These elements also lie in L, and since L is a
lattice there must be an element z ∈ L such that x1, x2 ≤ z ≤ y1, y2. As z ≤ y1 ≤ h, z must
lie in ↓h. Thus ↓h is a partial lattice because it satisfies the lattice property.

The second fact is similar. Suppose ↓h is removed from a partial lattice L. If there
are four elements x1, x2, y1, y2 ∈ L ∖ ↓h with x1, x2 < y1, y2, then there must be an element
z ∈ L with x1, x2 ≤ z ≤ y1, y2. This element z cannot lie in ↓h because x1 ≤ z and x1 /∈ ↓h.
Therefore z ∈ L ∖ ↓h.

2Here the partial order on a block is inherited from the order on L.

16



Remark 5. To avoid confusion in our notation, all lattice relations and operators are
assumed to be with respect to L. In particular, ∧, ∨, ↑, and ↓ always reference the full
lattice and are not restricted to a single block.

Intuition for Block Decompositions

We can now explain intuitively why a block decomposition is a good idea and how it
leads to an effective data structure. Lemma 4 means that the blocks can be treated
as independent partial lattices. Moreover, the elements within each block are all thin,
with the noteworthy exception of the block headers. For any single block, this thinness
condition makes it possible to create a fast, simple, space-efficient data structure that
facilitates computations within that block. However, such a data structure only contains
local information about its block; it cannot handle operations that span multiple blocks.

For those operations, we rely upon the block headers to bridge the gaps. The block
headers are significant because they induce a unique representative property on the blocks:
If h is the block header of some principal block B and x is some element of the lattice, then
we think of x ∧ h as the representative of x in block B. For all of the operations that we
care about, the representative of x in B faithfully serves the role of x during computations
within B.

Combining the power of the unique representative property with our ability to quickly
perform block-local operations gives us an effective data structure for lattices, which we
are now prepared to describe.

2.5 A Data Structure for Order Testing
First, we describe a simple data structure that performs order-testing queries (answers “Is
x ≤ y?”) in constant time. We later extend it to handle meet and join queries as well.

Given a partial lattice L with n elements, we perform a block decomposition on L using
the block size k = √

n. Let B1,B2, . . . ,Bm, and Bres be the blocks of this decomposition
and h1, . . . , hm be the block headers. Note that m ≤ √

n.

Information Stored

We represent each element of L by a node with two fields.3 One field contains a unique
identifier for the lattice element, a number between 0 and n − 1, for indexing purposes.
The other field indicates the block that the element belongs to.

3We often use the term “node” to refer to the element of L that the node represents.

17



Our data structure consists of (A), a collection of arrays, and (B), a collection of
dictionaries.

(A) For each block header hi, we store an array containing a pointer to the node hi ∧ x
for each x ∈ L. The meet of any node with any block header can be found with one
access to the appropriate array.

(B) For each x ∈ L we store a dictionary DOWN(x) containing the identifiers of all the
nodes in the local downset of x. By using a space-efficient static dictionary (e.g. [47]),
membership queries can be performed in constant time. With this, we can test the
order between any two nodes in the same block in constant time.

Testing Whether x ≤ y
Given nodes x and y in L, we can test whether x ≤ y in three cases.

Case 1: If x is in a principal block Bi, then find yi = hi ∧ y using (A). If yi ∈ Bi, then x ≤ y
if and only if x is a member of DOWN(yi); this can be tested using (B). If yi /∈ Bi,
then x /≤ y.

Case 2: If x ∈ Bres and y ∈ Bres, then x ≤ y if and only if x is a member of DOWN(y).

Case 3: If x ∈ Bres and y /∈ Bres, then x /≤ y.

The three cases can be tested in constant time using (A) and (B).

Proposition 6. The above method correctly answers order queries.

Proof. Clearly the three cases cover all possibilities for x and y.
In Case 1, yi = hi ∧ y has the property that x ≤ y if and only if x ≤ yi. This property

holds because x ≤ hi by assumption, and by the definition of meet,

x ≤ hi ∧ y if and only if x ≤ hi and x ≤ y.

If yi ∈ Bi, then the order can be tested directly using DOWN(yi). If yi /∈ Bi, then yi cannot
be above x in the lattice because yi ≤ hi and every element between x and hi must lie in
Bi.

Case 2 is checked directly using (B).
Case 3 is correct because Bres consists of all elements that are not below any block

header. As y is in some principal block, it must lie below some block header. Hence, x
cannot be below y.
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Space Complexity

Storing the n nodes of the lattice requires Θ(n) space. Each array of (A) requires Θ(n)
space and there are at most

√
n block headers, yielding O(n3/2) space in total.

Assuming (B) uses a succinct static dictionary (see [47]), the space usage for (B) will
be proportional to the sum of ∣ ↓x∩Bx∣ over all x ∈ L, where Bx is the block containing x.
If x is not a block header, then ∣ ↓x∩Bx∣ <

√
n because the local downsets must be smaller

than the block size of the decomposition. There are n−m such elements, as m denotes the
number of principal blocks. If x is a block header, then ↓x ∩Bx = Bx. Thus

∑
x∈L

∣ ↓x ∩Bx∣ ≤ (n −m)
√
n +

m

∑
i=1

∣Bi∣ ≤ (n −m)
√
n + n ≤ 2n3/2.

The total space for the data structure is therefore O(n3/2).

2.6 Finding Meets and Joins
We now extend the order-testing data structure of the last section to answer meet queries:
Given two elements x and y in L, we wish to find x ∧ y. Our data structure can answer
these queries in O(n3/4) time.

Subblock Decompositions

Let Bi be a principal block with block header hi. A subblock decomposition of Bi is simply
a block decomposition of Bi ∖ {hi}.

To state it explicitly, the subblock decomposition is a partition of Bi ∖ hi into a set of
principal subblocks {Si,1, Si,2, . . . , Si,`i}, each having a subblock header gi,j, and one residual
subblock Si,res. The decomposition strategy is identical to that of a block decomposition,
and it still depends on a subblock size r that we specify.

We exclude hi from the subblock decomposition as a convenience. We want to use the
property that the local downsets of the elements in Bi have size less than

√
n, and this

holds for every element of Bi except for hi.
Obviously, the subblocks have the same properties as blocks.

• Each principal subblock Si,j is a subset of Bi with ∣Si,j ∣ ≥ r. Hence, `i ≤ ∣Bi∣
r .

• If x ∈ Si,j ∖ {gi,j} then ∣ ↓x ∩ Si,j ∣ < r.

• If x ∈ Si,res then ∣ ↓x ∩ Si,res∣ < r.

• Each subblock is a partial lattice.
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Extending the Data Structure

As before, let B1,B2, . . . ,Bm, and Bres be the blocks of the decomposition of L, each having
size at least

√
n. Within each principal block Bi, we perform a subblock decomposition

with subblock size r =
√

∣Bi∣, yielding subblocks Si,1, Si,2, . . . , Si,`i , and Si,res. We have
`i ≤

√
∣Bi∣ for 1 ≤ i ≤ m. There is a subblock header gi,j for each principal subblock Si,j,

1 ≤ i ≤m and 1 ≤ j ≤ `i.

Information Stored

We add a new field to each node that indicates which subblock contains it. We store (A)
and (B) as in the order-testing structure, and additionally:

(C) For each subblock header gi,j, we store an array containing a pointer to gi,j ∧ x for
all x ∈ Bi. These arrays allow us to determine the meet of any subblock header and
any node in the same block with a single access.

(D) For each principal subblock Si,j, we store a table that contains the meet of each pair
of elements from Si,j, unless the meet lies outside Si,j. That is, the table has ∣Si,j ∣2
entries indexed by pairs of elements in Si,j. The entry for (x, y) contains a pointer to
x∧ y if it lies in Si,j, or null otherwise. We can compute meets within any principal
subblock in constant time using these tables.

(E) For every element x in a residual subblock Si,res, we store ↓x ∩ Si,res as a linked list
of pointers. This allows us to iterate through the local downset of each element in
the residual subblock.

Finding the Meet

This data structure allows us to find the meet of two elements x, y ∈ L in O(n3/4) time.
The meet-finding operation works by finding representative elements for x and y in each
principal block and computing the meet of each pair of representatives. We call these
candidate meets for x and y. Once the set of candidate meets is compiled, the algorithm
finds the largest element among them (with respect to the lattice order) and returns it.

We refer to the algorithm as Meet. This algorithm uses a subroutine called Meet-
In-Block that finds the meet of two elements from the same principal block, or else
determines that the meet does not lie within that block. The subroutine is similar to the
main procedure except that it works on the subblock level instead of the block level.
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Meet: Given x, y ∈ L, find x ∧ y.

(a) Initialize an empty set Z to store candidate meets for x and y.

(b) Check principal blocks: For each principal block Bi, find the representative elements
xi = x ∧ hi and yi = y ∧ hi using (A). If xi ∈ Bi and yi ∈ Bi, then use the subroutine
Meet-In-Block to either find xi ∧ yi or determine that Bi does not contain it. If
xi ∧ yi is found, then add it to Z.

(c) Check residual block: If x and y are both in the residual block Bres, then use
DOWN(x) to iterate through every element z ∈ ↓x ∩ Bres. Add z to Z whenever
z ≤ y.

(d) Using the order-testing operation, determine the maximum element in Z and return
it. If Z is empty, then conclude that the meet of x and y does not exist and return
null.

Meet-In-Block: Given xi, yi ∈ Bi, either find xi ∧ yi ∈ Bi or determine that xi ∧ yi /∈ Bi.

(a) If xi = hi or yi = hi, then return the smaller of xi and yi. Otherwise, initialize an
empty set Zi to store candidate meets for xi and yi in Bi.

(b) Check principal subblocks: For each principal subblock Si,j, find the representative
elements xi,j = xi ∧ gi,j and yi,j = yi ∧ gi,j using (C). If xi,j and yi,j are both in Si,j,
then look up

zi,j =
⎧⎪⎪⎨⎪⎪⎩

xi,j ∧ yi,j if xi,j ∧ yi,j ∈ Si,j
null otherwise

using the appropriate table in (D). If zi,j /= null then add it to Zi.

(c) Check residual subblock: If xi and yi are both in the residual subblock Si,res, then use
(E) to iterate through every element z ∈ ↓xi ∩ Si,res. Add z to Zi whenever z ≤ yi.

(d) Using the order-testing operation, determine the largest node in Zi and return it. If
Zi is empty, then conclude that xi ∧ yi /∈ Bi and return null.

21



Correctness

We now prove that this algorithm is correct, beginning with the correctness of Meet-In-
Block.

Lemma 7. Meet-In-Block returns xi ∧ yi if it lies in Bi and null otherwise.

Proof. If xi = hi or yi = hi, then xi ∧ yi is returned in step (i). Otherwise, the correctness
of the algorithm relies on two facts.

Fact 1. Every element z ∈ Zi satisfies z ≤ xi ∧ yi.

Fact 2. If xi ∧ yi exists and lies in Bi, then it is added to Z.

Assuming these hold, step (iv) must correctly answer the query: In the case that xi∧yi ∈ Bi,
the meet must be added to Zi and it must the maximum element among all elements in
Zi. If xi ∧ yi /∈ Bi, then Zi will be empty by the first fact.

Fact 1 is straightforward. Every candidate meet z added to Zi in step (ii) is xi,j ∧ yi,j
for some j ∈ {1, . . . , `i}, as reported by (D). Since xi,j ≤ xi and yi,j ≤ yi we have z ≤ xi ∧ yi.
When a candidate meet z is added to Z in step (iii) it is because z ∈ ↓xi ∩Bres and z ≤ yi;
hence z ≤ xi ∧ yi.

To prove Fact 2, first suppose that xi ∧ yi lies in a principal subblock Si,j. Then
xi ∧ yi ≤ gi,j. By the elementary properties of the meet operation,

xi ∧ yi = xi ∧ yi ∧ gi,j = (xi ∧ gi,j) ∧ (yi ∧ gi,j) = xi,j ∧ yi,j.

Thus, xi ∧ yi is added to Z during step (ii) when the subblock Si,j is considered.
Now suppose that xi∧yi lies in the residual subblock Si,res. In this case, xi and yi must

themselves lie in Si,res, for if either one is below any subblock header of Bi then their meet
would also be below that same block header. Thus, xi ∧ yi will be added to Zi in step (3)
during which every element of ↓xi ∩ ↓ yi ∩ Si,res is added to Zi. This proves Fact 2.

Lemma 8. Meet finds x ∧ y or correctly concludes that it does not exist.

Proof. This proof is similar to that of Lemma 7. It relies on the same two facts.

Fact 1. Every element z ∈ Z satisfies z ≤ x ∧ y.

Fact 2. If x ∧ y exists, then it is added to Z.
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Assuming these hold, step (4) must correctly answer the query. The only significant dif-
ference between Meet and Meet-In-Block is the method of finding candidate meets in
step (2). Meet calls Meet-In-Block to find xi ∧ yi if it lies in Bi whereas Meet-In-
Block uses (D) to find xi,j∧yi,j if it lies in Si,j. By Lemma 7, Meet-In-Block accurately
returns xi ∧ yi if xi ∧ yi ∈ Bi and null otherwise. Now Facts 1 and 2 may be proved by the
same arguments.

Time Analysis

The meet procedure takes O(n3/4) time in the worst case. We first analyze the time for
Meet-In-Block applied to a principal block Bi. Step (i) takes constant time. Step (ii)
takes constant time per principal subblock of Bi using (C) and (D). Since each principal
subblock has size at least

√
∣Bi∣, there are at most ∣Bi∣/

√
∣Bi∣ =

√
∣Bi∣ principal subblocks;

hence the time for step (ii) is O(
√

∣Bi∣). Step (iii) performs constant-time order testing on
all the elements below xi in the residual subblock. By the subblock decomposition method,
there are at most

√
∣Bi∣ such elements.

When step (iv) is reached, Zi has been populated with at most one element per principal
subblock (

√
∣Bi∣ in total) and at most

√
∣Bi∣ elements from the residual sublock. The

maximum element in Zi is found in linear time during this step. Thus, Meet-In-Block
runs in O(

√
∣Bi∣) time when applied to block Bi.

Now the main procedure can be analyzed in a similar fashion. Step (1) takes constant
time. Step (2) calls Meet-In-Block on every principal block, and hence the total time
for step (2) is proportional to ∑m

i=1

√
∣Bi∣. By Jensen’s inequality, ∑m

i=1

√
∣Bi∣ is maximized

when all the blocks have size
√
n, since each principal block has size at least

√
n and

∑m
i=1 ∣Bi∣ ≤ n. Thus

m

∑
i=1

√
∣Bi∣ ≤

√
n

∑
i=1

n1/4 ≤ n3/4.

As in the analysis of steps (iii) and (iv), steps (3) and (4) take O(√n) time. Therefore
the time complexity of Meet is O(n3/4).

Space Complexity

The space required to store the nodes, (A), and (B) is O(n3/2) as in Section 2.5.
Fix i ∈ {1, . . . ,m}. We show that the parts of (C), (D), and (E) relating to Bi occupy

O(∣Bi∣
√
n) space. Since ∑m

i=1 ∣Bi∣ ≤ n, it follows that the entire data structure takes O(n3/2)
space.
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Each array in (C) requires O(∣Bi∣) space. There are at most
√

∣Bi∣ subblock headers for
a total of O(∣Bi∣3/2) space.

The lookup table in (D) for subblock Si,j takesO(∣Si,j ∣2) space. Since
√

∣Bi∣ ≤ ∣Si,j ∣ ≤
√
n,

we have ∑`i
j=1 ∣Si,j ∣2 ≤ √

n∑`i
j=1 ∣Si,j ∣. Notice ∑`i

j=1 ∣Si,j ∣ ≤ ∣Bi∣ as the subblocks are disjoint
subsets of Bi. Therefore the total space occupied by (D) is O(∣Bi∣

√
n).

The lists stored by (E) occupy O(
√

∣Bi∣) space each for a total of O(∣Bi∣3/2) space. The
space charged to block Bi is therefore O(∣Bi∣3/2 + ∣Bi∣

√
n + ∣Bi∣3/2) = O(∣Bi∣

√
n).

Preprocessing

It remains to discuss how to efficiently decompose the lattice and initialize the structures
(A) — (E). Recall that we the lattice is presented initially by its transitive reduction graph.
It is known that the number of edges in the TRG of a lattice is O(n3/2) [161, 240]. We
assume that the TRG is stored as a set of n nodes, each with a list of its out-neighbours
(nodes that cover it) and a list of in-neighbours (nodes that it covers). The total space
needed for this representation is O(n3/2). The preprocessing takes O(n2) time and the
space usage never exceeds O(n3/2).

The first step in preprocessing is to determine the block decomposition. The same
technique will apply to subblock decompositions. We begin by computing a linear extension
of the lattice. A linear extension of a partially-ordered set is an order of the elements
x1, x2, . . . , xn such that if i ≤ j then xj /≤ xi. A linear extension may be found by performing
a topological sort on the TRG, which can be done in O(n3/2) time [146].

We now visit each element of L in the order of this linear extension and determine
the size of its downset. The size of the downset can be computed by a depth-first search
beginning with the element and following edges descending the lattice. This search takes
time proportional to the number of edges between elements in the downset. As soon as
this process discovers a fat node h (a node with at least

√
n elements in its downset), it

can be used as a block header. Then h and every element of its downset can be deleted
from L. The process of computing the sizes of the downsets can continue from the node
following h in the linear extension, and the only difference is that the graph searches used
to compute the size of each downset must now be restricted to L ∖ ↓h. There is no need
to recompute the downset size of any node before h in the linear extension because the
size of its downset was less than

√
n previously and deleting ↓h can only reduce this value.

The fat nodes encountered in this way form the block headers of the decomposition. After
every node has been visited, the remaining elements can be put into the residual block.

The time needed for the decomposition depends on the number of edges in each downset.
By Lemma 4, every downset is a partial lattice, and thus a downset with k nodes can have
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only O(k3/2) edges. For every thin node encountered, the number of edges in the downset
is at most O((√n)3/2) = O(n3/4) because it contains less than

√
n elements. Thus, the

time needed to visit all the thin nodes is O(n7/4).
Whenever a fat node is discovered its downset is removed immediately, and so the edges

visited during the DFS are never visited again. Hence, the time needed to examine all of
the block headers is proportional to the number of edges in the whole TRG. Therefore a
block decomposition can be computed in O(n7/4) time.

By the same procedure, the subblocks can be computed in O(∑m
i=1 ∣Bi∣7/4) time. Since

∑m
i=1 ∣Bi∣ ≤ n, this is at most O(n7/4).
With the block and subblock decompositions in hand, data structures (A) — (E) can

be initialized. We explore this in the following section.
We have now proven the main theorem of this chapter.

Theorem 9. There is a data structure for lattices that requires O(n3/2) space, answers
order-testing queries in O(1) time, and computes the meet or join of two elements in
O(n3/4) time. The preprocessing time starting from the transitive reduction graph of the
lattice is O(n2).

A straightforward generalization of the data structure allows for a space-time tradeoff.

Corollary 10. For any c ∈ [1
2 ,1], there is a data structure for lattices that requires O(n1+c)

space and computes the meet or join of two elements in O(n1−c/2) time. The preprocessing
time, starting from the transitive reduction graph of the lattice, is O(n2 + n1+3c/2).

Proof. The modification is obtained by adjusting the block size of the initial decomposition
from

√
n to nc. Otherwise, the data structure and methods are identical. The time, space,

and preprocessing analyses are similar.

Note that for c = 1
2 , this data structure is precisely that of Theorem 9.

2.7 Initializing the Data Structure
We now show how (A), (B), (C), (D), and (E) can be constructed in O(n2) time. We
assume that we have access to the TRG of the lattice and that the block and subblock
decompositions have already been computed.

(A) Some care is required to construct (A) efficiently. Let x1, . . . , xn be a linear extension
of L. Consider a principal block Bi with block header hi. To find z ∧ hi for each
z ∈ L, we do the following.
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1. Initialize an array of length n to store the meet of hi with each element and
populate the array with null in every entry.

2. Perform a DFS to find ↓hi in L. Note that ↓hi may be considerably larger than
Bi. Put the elements of ↓hi (note that this includes hi) into a linear extension
y1, . . . , yk by restricting the linear extension of L to these elements.

3. Traverse the nodes in reverse order of this extension (beginning with yk and
ending at y1). For each node yj, perform a DFS on the upset of that node in
the full lattice. For every node z visited during the DFS for node yj, record
that z ∧ hi = yj in the array, and then mark z so that it will not be visited by
later graph searches. After all the nodes in ↓hi have been processed, restore the
lattice by unmarking all nodes.

By this method, the entry for z ∧hi in the array is recorded to be the last element in
the linear extension of ↓hi that is below z. This must be the correct node because
it is below both z and hi, and every other element below z and hi occurs earlier in
the linear extension. Whenever z ∧ hi does not exist in the lattice, the array entry
for z ∧ hi is the default value null.

The time for this procedure is bounded by the number of edges in the TRG for L
because no node is visited more than once over all of the graph searches. Recall that
the number of edges in the TRG is O(n3/2). Summing over all block headers, the
total time to create (A) is at most O(n3/2√n) = O(n2).

(B) This can be computed by performing a DFS on the local downset of each node and
adding the elements visited to a dictionary for that node.

Initializing and populating the space-efficient dictionary of [47] takes time linear in
the number of dictionary entries. Excluding the block headers, the local downsets
have at most

√
n nodes and O(n3/4) edges; hence the time spent on all non-block

headers is at most O(n7/4). The local downsets of the block headers are all disjoint,
so the total time required is O(n7/4).

(C) Use the same method for (A) restricted to each block to compute (C). The total time
is O(∑m

i=1 ∣Bi∣2), which is no larger than O(n2).

(D) The method of (A) can also be used to compute (D). For each element z in a
principal subblock Si,j, find the meet of z with every other element in the subblock
in O(∣Si,j ∣3/2) time, where z plays the role of hi in the method for (A). It takes
O(∣Si,j ∣5/2) time to do this for every element in a single subblock and the total time
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is proportional to
m

∑
i=1

`i

∑
j=1

∣Si,j ∣5/2 ≤
m

∑
i=1

`i

∑
j=1

∣Si,j ∣(
√
n)3/2 ≤ n7/4.

The first inequality uses the fact that each subblock has size at most
√
n. The second

inequality holds because the subblocks are disjoint.

(E) Each linked list can be constructed by performing a DFS on the downset of each
element in a residual subblock. This takes O(n7/4) time as in the analysis for (B).

2.8 Degree-Bounded Extensions
Recall that we assume that the lattice is initially represented by its transitive reduction
graph (TRG). Let the degree of a lattice node be the number of in-neighbours in the TRG,
or equivalently, the number of nodes it covers. Interestingly, developing methods that
handle high-degree nodes efficiently has been the primary obstacle to improving on our
data structure. Indeed, the “dummy node” technique of Talamo and Vocca, explained in
Section 2.9, is effectively used to get around high-degree lattice elements. We have found
that meets and joins can be computed more efficiently as long as the maximum degree
of any node in the lattice is not too large. This is the case for distributive lattices, for
example, as log2 n is the maximum degree of a node in a distributive lattice4. In this
section, we explore new data structures for meet and join operations that perform well
under this assumption.

Let d be the maximum degree of any node in a partial lattice L. As a convenience,
we assume in this section that L has a top element. The purpose of this assumption is to
avoid a lattice with more than d maximal elements; otherwise we would need to define d
as the larger of the maximum degree and the number of maximal elements in the lattice.

This assumption has the effect that the residual block in any block decomposition
of L has a top element (unless it is empty). The only practical difference between the
residual block and a principal block is that the residual block may be smaller than the
block size of the decomposition. The results of this section are easier to relate if we assume
henceforth that all blocks are principal blocks and each has a block header. Thus, a block
decomposition with block size k createsm blocks B1, . . . ,Bm with block headers h1, . . . , hm,
where ∣Bi∣ ≥ k for 1 ≤ i ≤m − 1. The number of blocks is at most n

k + 1.
We begin with a simple data structure that computes joins between elements using a

new strategy. It is more efficient than our earlier method when d ≤ n3/4. We then generalize
4We leave this as an exercise using Birkhoff’s Representation Theorem [31].
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the idea to create a more sophisticated recursive data structure. It improves on the simple
structure for all values of d and works especially well when d ≤ √

n. The space usage is
O(n3/2) for both data structures. Either one can be used to compute meets as well by
inverting the lattice order and rebuilding the data structure, although the value of d may
be different in the flipped lattice.

Theorem 11. There is a data structure for lattices that requires O(n3/2) space and com-
putes the join of two elements in O(√n + d) time.

Proof. This data structure uses a block decomposition with block size k = √
n and stores

(A) and (B) just as in Section 2.5. This is everything we need to perform order-testing in
constant time. However, we now use this information to compute joins instead of meets.

Let B1, . . . ,Bm be the blocks of the decomposition with block headers h1, . . . , hm. Fur-
ther assume that the order B1,B2, . . . ,Bm reflects the order that the blocks were extracted
from L during the decomposition.

Given x, y ∈ L, x ∨ y may be found as follows.

(1) Use order-testing to compare x and y to every block header. Let i∗ ∈ {1, . . . ,m} be
the smallest value for which x ≤ hi∗ and y ≤ hi∗ .

(2) It must be that x ∨ y lies in Bi∗ . Let c1, c2, . . . , ct ∈ Bi∗ be the elements covered by
hi∗ in Bi∗

5. Compare x and y to each of these elements using order-testing queries.
If x, y ≤ cj for some j ∈ {1, . . . , t}, then proceed to step (3). Otherwise, conclude that
x ∨ y = hi∗ .

(3) The join of x and y must lie in the local downset of cj. Find x ∨ y by comparing x
and y to every element in ↓ cj ∩Bi∗ and choosing the smallest node z with x, y ≤ z.

This procedure always finds x∨y. The purpose of step (1) is to identify the block containing
x ∨ y. With i∗ defined as in the algorithm, observe that x ∨ y must have been added to
Bi∗ during the decomposition because x ∨ y ∈ ↓hi∗ and x ∨ y /∈ ↓hi for any i < i∗. This step
takes O(√n) time as m ≤ √

n + 1.
Once Bi∗ has been identified, the difficulty lies in finding the join. The algorithm checks

all of the children c1, . . . , ct of hi∗ to find an element cj above x∨y. This step requires O(d)
time as t ≤ d. If the algorithm succeeds in finding cj then it compares x and y with all of
the elements in the local downset of cj to determine the join. By the thinness property,
this step takes only O(√n) time. If no such cj exists, then hi∗ must be the only element
in Bi∗ above both x and y. Thus, this data structure finds x ∨ y in O(√n + d) time.

5It is possible that hi∗ covers other elements belonging to earlier blocks. These are not included.
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Theorem 12. There is a data structure for lattices that requires O(n3/2) space and com-
putes the join of two elements in O(d logn

log d ) time.

Proof. We extend the ideas of Theorem 11 using a recursive decomposition of a lattice.
The recursive decomposition works in two stages. First, we perform a block decompo-

sition of L using the block size n/d. This produces up to d + 1 blocks B1, . . . ,Bm.
We decompose each Bi further using a cover decomposition. If Bi has a block header

hi and c1, c2, . . . , ct ∈ Bi are the elements covered by hi, then a cover decomposition of Bi

is a partition of Bi into the sets

Ci,j = (↓ cj ∩Bi) ∖ (
j−1

⋃
`=1

↓ cj) for 1 ≤ j ≤ t.

We call these sets chunks to avoid overloading “block” and we call cj the chunk header of
Ci,j. Unlike a block decomposition, a cover decomposition does not depend on a block size.
It is unique up to the ordering of c1, . . . , ct.

So far, our decomposition produces blocks {B1, . . . ,Bm} and chunks {Ci,j ∣ 1 ≤ i ≤m,1 ≤
j ≤ deg(hi)}. We recursively decompose every chunk Ci,j in the same two stages, first by
a block decomposition with block size ∣Ci,j ∣

d and then by a cover decomposition of each of
the resulting blocks. The recursive decomposition continues in this fashion on any chunk
with size at least 2d.

The recursion induces a tree structure on the set of block headers and chunk headers
in the lattice. The children of each block header are the chunk headers chosen during
its decomposition and vice versa. The order of the children of a node corresponds to the
order that the blocks or chunks are taken during the decomposition. Finally, we create one
special node to act as the root of the tree. The children of the root are the block headers
of the initial decomposition. We call this the decomposition tree.

It is easy to see that every lattice element occurs at most once in the tree and that the
maximum degree of any tree node is at most d+ 1. Less obvious is the fact that the depth
of the tree is O( logn

log d ).
To see this, let c be a chunk header, let h be one of its children in the tree, and let

c′ be a child of h. Assume c is the header of a chunk C, h is the header of a block B
contained in C, and c′ is the header of a chunk C ′ contained in B; see Figure 2.3. Block
B was formed during a block decomposition of C with size ∣C ∣/d. Since h covers c′ in B,
c′ must have been a thin node during that decomposition. The chunk C ′ was then created
from the local downset of c′ in B. Thus ∣C ′∣ ≤ ∣ ↓ c′ ∩B∣ ≤ ∣C ∣/d.

This implies that the size of chunks decreases by a factor of d between every chunk
header and its grandchildren in the decomposition tree. After 2⌈ logn

log d ⌉ generations in the
decomposition tree, every chunk must have size less than 2d. This proves the claim.

29



c

h

c
0

C

c

B
C

0

h

c
0

Figure 2.3: Three nodes in the decomposition tree and the corresponding chunks and block
of the recursive decomposition. The size of C ′ can be no larger than ∣C ∣/d.

The data structure is now simple to describe. We store the decomposition tree and, for
each leaf, we store a list of the elements in the chunk of that chunk header. Since the chunks
represented by leaves are pairwise disjoint, only O(n) space is needed for this structure.
Additionally, we create and store the order-testing structure of Section 2.5, bringing the
total space to O(n3/2).

The join of two elements can be found using a recursive version of the algorithm from
Theorem 11. Suppose we are given x, y ∈ L and must determine x∨y. Through a variable u
that represents the node being considered, we recursively traverse the decomposition tree.
Initially set u equal to the root and proceed as follows.

Base Case:

If u is a leaf, then consider the stored list of elements for u. Find x ∨ y by comparing x
and y to every element in the list and returning the smallest node z with x, y ≤ z.

Recursive Case:

If u is not a leaf, let v1, v2, . . . , vk be the children of u in the decomposition tree, listed in
order. Use order-testing to compare x and y to each vi. If there is no vi such that x ≤ vi
and y ≤ vi, then conclude that x∨y = u. Otherwise, let i∗ ∈ {1, . . . , k} be the smallest value
for which x ≤ vi∗ and y ≤ vi∗ . Recurse on vi∗ .

This procedure spends O(d) time on each node. In the base case, the list stored for u
has length O(d) and the join can be found in this list in linear time. The recursive case
takes O(d) time as well since the maximum degree of the decomposition tree is at most
d + 1. As the depth of the tree is O( logn

log d ), the total time of this procedure is O(d logn
log d ).
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Correctness is a consequence of the fact that x ∨ y lies in the first block of each block
decomposition whose header is above both x and y. The same fact holds for the chunks in
a cover decomposition. Thus, each time i∗ is chosen in the recursive case, it must be that
x ∨ y lies in the block or chunk for vi∗ .

2.9 Correcting Earlier Work
As stated in the introduction, this chapter relies on ideas from the lattice data structure
of [221, 222, 223]. These papers contain a mistake that we believe is not easily repaired.
The purpose of this section is to summarize their techniques, explain where the error occurs,
and argue that it cannot be fixed by a minor modification. We urge the interested reader
to consult [223] to confirm this analysis.

We restate their algorithm in the language of this chapter. In the interest of a clear
and concise explanation, we do not rebuild all the machinery of their work. In particular,
we ignore their double-tree structure and we only consider blocks made from downsets
(in their papers, blocks may be built from upsets or downsets). In our observation, the
double-tree structure is necessary only as a null/non-null value check for order testing and
meet/join queries (thus a simple dictionary suffices); further, while we have concerns about
using both upsets and downsets for blocks, using downsets alone avoids such issues and
still satisfies the requirements in their papers (Lemma 4.1 in [223]). We take these liberties
for the purpose of quickly coming to the relevant issue. Readers will need to confirm for
themselves that our explanation is fundamentally accurate.

Their method relies on a lattice decomposition to build the data structure, and our
block decomposition is similar to the basic version of the decomposition described in their
papers. Note that what we call “blocks” are called “ideals” in [222] and “clusters” in [223].
They do not decompose the lattice at a second level like our subblock decompositions. The
error is introduced in the extended version of their lattice decomposition, which we now
describe.

The intuition behind their data structure is that everything would be easier if every
block had size Θ(√n), say between

√
n and 2

√
n. If this were the case, then we could

afford to explicitly store the meet/join and reachability property between every pair of
elements from the same block, as this would use roughly ∑

√
n

i=1(
√
n)2 = O(n3/2) space. This

would allow the meet of two elements from the same block to be found in constant time by
a simple table lookup. In terms of our meet-finding algorithm from Section 2.6, this would
reduce the time for Meet-In-Block to a constant and the time for Meet to O(√n).
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Dummy Nodes

A block decomposition by itself cannot guarantee anything about the sizes of the blocks
except that each is at least

√
n. They attempt to simulate blocks of size

√
n by modifying

the transitive reduction graph (TRG) of the lattice, creating “dummy nodes” with downsets
of size Θ(√n) to act as block headers when none exist naturally.

Dummy nodes are introduced as follows. Suppose a block B is created that has more
than 2

√
n elements. Assume that the block header has children c1, c2, . . . , ct in the TRG.

Consider the sequence

∣ ↓ c1 ∩B∣, ∣(↓ c1 ∪ ↓ c2) ∩B∣, . . . , ∣(↓ c1 ∪⋯ ∪ ↓ ct) ∩B∣.

As each of the children is a thin element (its local downset has size less than
√
n), the

difference between adjacent numbers in this sequence is less than
√
n. Thus, there is some

i ∈ {1, . . . , k} such that √
n ≤ ∣(↓ c1 ∪⋯ ∪ ↓ ci) ∩B∣ ≤ 2

√
n.

The children c1, . . . , ci may be grouped together and the set (↓ c1 ∪⋯∪ ↓ ci)∩B may be
considered as an artificial block having size Θ(√n). By removing this artificial block and
iterating on the remaining children, B is partitioned into a collection of artificial blocks
with sizes between

√
n and 2

√
n (except that there may be one smaller block at the end).

The only difference between these artificial blocks and ordinary principal blocks is that
they lack a block header.

To remedy this, a dummy node is introduced at the top of each artificial block. That
is, a new element d is created and inserted into the TRG with c1, . . . , ci as its in-neighbours
and the block header of B as its only out-neighbour.

Talamo and Vocca rely on the fact that the graph still represents a partial lattice after
adding dummy nodes in this way. They state on page 1794 of [223]:

“By construction, the dag obtained by adding dummy vertices still satisfies the
lattice property.”

Unfortunately, this claim is not true in many cases. Consider the stripped-down example
in Figure 2.5. The lattice on the left is changed to the graph on the right by introducing
a dummy node as described. However, the graph on the right fails the lattice property
because the join of x and y is not well-defined: Both c3 and d are minimal among elements
in ↑x ∩ ↑ y. Symmetrically, the meet of c3 and d is not well-defined either. In this case,
adding d broke the lattice property.

Although the example is on a very small lattice, it scales easily to any size. Any number
of nodes could be added to the original lattice so that ∣ ↓ c1∪↓ c2∣ ∈ [√n,2√n]. The dummy
node added in this case would still violate the lattice property.
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Figure 2.4: Dummy nodes are inserted between the block header and its children to simulate
blocks of size Θ(√n).

h
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c1 c2 c3

d

x y x y

Figure 2.5: Inserting a dummy node breaks the lattice property.

This detail is easy to overlook, especially since ↓d ∩B is necessarily a partial lattice.
However, the lattice property may fail in the larger structure when dummy nodes are
added. This fundamentally impacts the correctness of their approach.
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Impact Of The Error

With dummy nodes, it is no longer true that every element has a unique representative in
each block. Talamo and Vocca use the following text on page 1789 of [223], “given an ex-
ternal vertex v, the pair (v,Clus(c)) univocally identifies a vertex u ∈ Clus(c) representing
either the LUB(Clus+(c) ∩ Clus+(v)) or the GLB(Clus−(c) ∩ Clus−(v)).” In the language
of our exposition, the claim is that for every block header h, any external element v must
have a unique representative x∧h. Consider again the example in Figure 2.5 with d as the
block header of its downset. The external element c3 does not have a unique representative
in the block headed by d, since the meet of d and c3 is now undefined.

In [223], this breaks Lemma 3.1 when c is a dummy node, which in turn breaks Lemma
3.3 and implies their data structure C on page 1792 of [223] would need to keep multiple
entries for an element-cluster pair in order to guarantee correctness of the reachability
algorithm described below it. We see no reason why the number of such representatives
stored per element should be small, nor that the total number of representatives stored
should be small, which undermines both the proposed query and space complexities.

The same issue arises in Talamo and Vocca’s meet and join algorithms. The algorithm
given relies on the unique representative of an element with a block, and without it, neither
the O(n√n) space bound nor the O(√n) time bound on meet or join operations follow in
Proposition 6.4 of [223].

Further, if dummy nodes are avoided altogether, the space bound can be Ω(n2), as
explained on page 1793 of [223].

It has been suggested to us that the issues may be avoided if the dummy nodes are not
considered as actual nodes of the lattice itself, but instead as a construct to group small
clusters together for a counting reason. That is, the claim is that an O(n√n)-space O(1)-
time order-testing structure can be made without tangibly introducing dummy nodes. As
we have shown in this chapter, this is indeed true. However, let us emphasize that the work
of Talamo and Vocca does not achieve this. It describes a very different technique that
crucially relies on the unique representative property remaining true after grouping clusters
using dummy nodes, which does not hold in general regardless of whether dummy nodes are
actually inserted into the graph or just used as a conceptual tool. With their techniques,
we see no way to achieve their claimed O(√n) time meet/join algorithm without their
erroneous dummy nodes. We give evidence in the following section as to why this might
be infeasible.
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Can It Be Fixed?

It is natural to search for a small change to the dummy node method that will fix this issue,
allowing us to effectively perform a block decomposition where every principal block has
size Θ(√n). It is especially tempting to do so because it could reduce the time for meet and
join operations from O(n3/4) to O(√n), as is claimed in [223]. The dummy node technique
also seems like a reasonable approach to handling high-degree lattice nodes, which have
often been an obstacle to the approaches we have considered.

There is good reason to expect that this is not possible, relying on some small assump-
tions. Suppose that there were a correct method of creating artificial principal blocks and
that the method still works when we increase the block size from

√
n to n2/3. That is,

suppose that we can reliably decompose any lattice into Θ(n1/3) blocks of size Θ(n2/3)
(and perhaps some O(n1/3) smaller blocks). Note that the structure of the lattice has no
impact on the ability to apply this method, thus we assume it applicable to all lattices.

There is the remaining issue of the residual block, however this is not a major difficulty.
By adding a top element to the partial lattice (as in a complete lattice), we can treat the
residual block in the same fashion as a principal block using the new top element as its
block header.

Since the number of lattices on k elements is 2Θ(k3/2), it is possible to uniquely identify
any such lattice using only Θ(k3/2) bits. Thus, each block of size Θ(n2/3) can be encoded in
Θ(n) bits, and all of the blocks in the decomposition can be encoded in Θ(n4/3) bits. The
order between any pair of elements in the same block can be tested, however inefficiently,
using the encoding for that block. As well, since there are only Θ(n1/3) block headers, all
of the meets between a lattice element and a block header can be stored in Θ(n4/3) space.
In other words, we can simulate both (A) and (B) in only O(n4/3) space.

This information is sufficient to perform order-testing between any pair of elements, and
thus it uniquely determines the lattice. Lattices do not permit such a small representa-
tion; this would violate the Θ(n3/2)-bit lower bound. This strongly suggests that artificial
blocks cannot be simulated without sacrificing the unique representative property, which
is essential to the data structure.

2.10 Conclusions
We have presented a data structure to represent lattices in O(n3/2) words of space, which
is within a Θ(logn) factor of optimal. It answers order queries in constant time and meet
or join queries in O(n3/4) time. This work is intended to replace the earlier solution to
this problem which was incorrect; see Section 2.9 for a discussion of the error. Our degree-
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bounded data structure uses O(n3/2) space and answers meet or join queries in O(d logn
log d )

time. For some low-degree lattices, this structure improves dramatically on our subblock-
based approach. Ours are the only data structures known to us that uses less than the
trivial O(n2) space.

We wonder what can be done to improve on our results. The time to answer meet and
join queries may yet be reduced, perhaps to the O(√n) bound claimed by [223]. Another
natural question is whether the space of the representation can be reduced to the theoretical
minimum of Θ(n3/2) bits.
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Chapter 3

Lazy Search Trees

3.1 Introduction
We consider data structures supporting order-based operations such as rank, select, mem-
bership, predecessor, successor, minimum, and maximum while providing dynamic opera-
tions insert, delete, change-key, split, and merge. The classic solution is the binary search
tree (BST), perhaps the most fundamental data structure in computer science. The original
unbalanced structure is credited to papers by Booth and Colin [33], Douglas [73], Wind-
ley [239], and Hibbard [135] in the early 1960’s. Since then, a plethora of balanced binary
search tree data structures have been proposed [5, 22, 23, 11, 108, 217, 214, 192], notable
examples including AVL trees [5], red-black trees [22], and splay trees [217]. A balanced
binary search tree is a staple data structure included in nearly all major programming lan-
guage’s standard libraries and nearly every undergraduate computer science curriculum.
The data structure is the dynamic equivalent of binary search in an array, allowing searches
to be performed on a changing set of keys at nearly the same cost. Extending to multiple
dimensions, the binary search tree is the base data structure on which range trees [28],
segment trees [26], interval trees [78, 176], kd-trees [25], and priority search trees [177] are
all built.

The theory community has long focused on developing binary search trees with efficient
query times. Although Ω(logn) is the worst-case time complexity of a query, on non-
uniform access sequences binary search trees can perform better than logarithmic time per
query by, for example, storing recently accessed elements closer to the root. The splay
tree was devised as a particularly powerful data structure for this purpose [217], achieving
desirable access theorems such as static optimality, working set, scanning theorem, static
finger, and dynamic finger [217, 62, 61]. The most famous performance statement about
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the splay tree, however, is the unproven dynamic optimality conjecture, which claims that
the performance of the splay tree is within a constant factor of any binary search tree on
any sufficiently long access sequence, subsuming all other access theorems. Proving this
conjecture is widely considered one of the most important open problems in theoretical
computer science, receiving vast attention by data structure researchers [8, 67, 68, 143, 35,
218, 234, 164, 52, 142, 16]. Despite ultimately remaining unsolved for nearly four decades,
this topic continues to receive extensive treatment [143, 35, 52, 169, 16].

Although widely considered for the task in literature, the binary search tree is not the
most efficient data structure for the standard dictionary abstract data type: in practice,
dictionaries are almost always implemented by hash tables, which support O(1) time insert,
delete, and look-up in expectation [100, 195]. The advantage of binary search trees, over
hash tables, is that they support order-based operations. We call dictionaries of this type
sorted dictionaries, to differentiate them from the simpler data structures supporting only
membership queries.

If we limit the order-based operations required of our sorted dictionary to queries for the
minimum or maximum element (or both), a number of alternative solutions to the binary
search tree have been developed, known as priority queues. The first of which was the
binary heap, invented in 1964 for the heapsort algorithm [236]. The binary heap achieves
asymptotic complexity equivalent to a binary search tree, though due to the storage of
data in an array and fast average-case complexity, it is typically the most efficient priority
queue in practice. Later, the invention of the binomial heap showed that the merging of
two arbitrary priority queues could be supported efficiently [232, 48], thus proving that
the smaller operation set of a priority queue allows more efficient runtimes. The extent
to which priority queues can outperform binary search trees was fully realized with the
invention of Fibonacci heaps, which showed insertion, merge, and an additional decrease-
key operation can all be supported in O(1) amortized time [99]. Since then, a number
of priority queues with running times close to or matching Fibonacci heaps have been
developed [101, 53, 46, 82, 128, 41, 129]. We refer to such priority queues with o(logn)
insertion and decrease-key costs as efficient priority queues, to distinguish them from their
predecessors and typically simpler counterparts with O(logn) insertion and/or decrease-
key cost.

The history of efficient priority queues contrasts that of binary search trees. Efficient
priority queues have been developed for the case when the number of queries is signif-
icantly less than the number of insertions or updates. On the other hand, research on
binary search trees has focused on long sequences of element access. Indeed, the dynamic
optimality conjecture starts with the assumption that n elements are already present in
the binary search tree, placing any performance improvements by considering insertion cost
entirely outside of the model. However, the theory of efficient priority queues shows that
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on some operation sequences, the efficiency gains due to considering insertion cost can be
as much as a Θ(logn) factor, showing an as-of-yet untapped area of potential optimization
for data structures supporting the operations of a binary search tree. Further, aside from
the theoretically-appealing possibility of the unification of the theories of efficient priority
queues and binary search trees, the practicality of improved insertion performance is ar-
guably greater than that of improved access times. For the purpose of maintaining keys
in a database, for example, an insert-efficient data structure can provide superior runtimes
when the number of insertions dominates the number of queries, a scenario that is certainly
the case for some applications [193, 43] and is, perhaps, more likely in general. Yet in spite
of these observations, almost no research has been conducted that seriously explores this
frontier [36].

We attempt to bridge this gap. We seek a general theory of comparison-based sorted
dictionaries that encompasses efficient priority queues and binary search trees, providing
the operational flexibility of the latter with the efficiency of the former, when possible. We
do not restrict ourselves to any particular BST or heap model; while these models with
their stronger lower bounds are theoretically informative, for the algorithm designer these
lower bounds in artificially constrained models are merely indications of what not to try. If
we believe in the long-term goal of improving algorithms and data structures in practice –
an objective we think will be shared by the theoretical computer science community at
large – we must also seek the comparison with lower bounds in a more permissive model
of computation.

We present lazy search trees. The lazy search tree is the first data structure to support
the general operations of a binary search tree while providing superior insertion time when
permitted by query distribution. We show that the theory of efficient priority queues can
be generalized to support queries for any rank, via a connection with the multiple selection
problem. Instead of sorting elements upon insertion, as does a binary search tree, the
lazy search delays sorting to be completed incrementally while queries are answered. A
binary search tree and an efficient priority queue are special cases of our data structure
that result when queries are frequent and uniformly distributed or only for the minimum
or maximum element, respectively. While previous work has considered binary search trees
in a “lazy” setting (known as “deferred data structures”) [157, 60] and multiple selection
in a dynamic setting [19, 20], no existing attempts fully distinguish between insertion
and query operations, severely limiting the generality of their approaches. The model we
consider gives all existing results as corollaries, unifying several research directions and
providing more efficient runtimes in many cases, all with the use of a single data structure.

Before we can precisely state our results, we must formalize the model in which they
are attained.
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3.1.1 Model and Results

We consider comparison-based data structures on the pointer machine. While we suggest
the use of arrays in the implementation of our data structure in practice, constant time
array access is not needed for our results. Limiting operations to a pointer machine has
been seen as an important property in the study of efficient priority queues, particularly
in the invention of strict Fibonacci heaps [46] compared to an earlier data structure with
the same worst-case time complexities [41].

We consider data structures supporting the following operations on a dynamic multiset
S with (current) size n = ∣S∣. We represent elements e ∈ S as key value pairs (k, v). Some
operations require pointers to a specific singular element. We call the corresponding data
type sorted dictionaries :

• Construction(S) ∶= Construct a sorted dictionary on the set S.

• Insert(e) ∶= Add key-value element e = (k, v) to S, using key k for comparisons;
(this increments n).

• RankBasedQuery(r) ∶= Perform a rank-based query pertaining to rank r on S.

• Delete(ptr) ∶= Delete the element pointed to by ptr from S; (this decrements n).

• ChangeKey(ptr, k′) ∶= Change the key of the element pointed to by ptr to k′.

• Split(r) ∶= Split S at rank r, returning two sorted dictionaries T1 and T2 of r and
n − r elements, respectively, such that for all x ∈ T1, y ∈ T2, x ≤ y.

• Merge(T1,T2) ∶= Merge sorted dictionaries T1 and T2 and return the result, given
that for all x ∈ T1, y ∈ T2, x ≤ y.

We formalize what queries are possible within the stated operation RankBasedQuery(r)
in Section 3.4. For now, we informally define a rank-based query as any query computable
in O(logn) time on a (possibly augmented) binary search tree and in O(n) time on an
unsorted array. Operations rank, select, contains, successor, predecessor, minimum, and
maximum fit our definition. To each operation, we associate a rank r: for membership
and rank queries, r is the rank of the queried element (in the case of duplicate elements,
an implementation can break ties arbitrarily), and for select, successor, and predecessor
queries, r is the rank of the element returned; minimum and maximum queries are special
cases of select with r = 1 and r = n, respectively.

The idea of lazy search trees is to maintain a partition of current elements in the data
structure into what we will call gaps. We maintain a set of m gaps {∆i}, 1 ≤ i ≤ m,

40



where a gap ∆i contains a bag of elements. Gaps satisfy a total order, so that for any
elements x ∈ ∆i and y ∈ ∆i+1, x ≤ y. Internally, we will maintain structure within a gap,
but the interface of the data structure and the complexity of the operations is based on the
distribution of elements into gaps, assuming nothing about the order of elements within a
gap. Intuitively, binary search trees fit into our framework by restricting ∣∆i∣ = 1, so each
element is in a gap of its own, and we will see that priority queues correspond to a single
gap ∆1 which contains all elements. Multiple selection corresponds to gaps where each
selected rank marks a separation between adjacent gaps.

To insert an element e = (k, v), where k is its key and v its value, we find a gap ∆i in
which it belongs without violating the total order of gaps (if x ≤ k for all x ∈ ∆i and k ≤ y
for all y ∈ ∆i+1, we may place e in either ∆i or ∆i+1; implementations can make either
choice). Deletions remove an element from a gap; if the gap is now empty we can remove
the gap. When we perform a query, we first narrow the search down to the gap ∆i in which
the query rank r falls (formally, ∑i−1

j=1 ∣∆j ∣ < r ≤ ∑i
j=1 ∣∆j ∣). We then answer the query using

the elements of ∆i and restructure the gaps in the process. We split gap ∆i into two gaps
∆′
i and ∆′

i+1 such that the total order on gaps is satisfied and the rank r element is either
the largest in gap ∆′

i or the smallest in gap ∆′
i+1; specifically, either ∣∆′

i∣ +∑i−1
j=1 ∣∆j ∣ = r or

∣∆′
i∣ +∑i−1

j=1 ∣∆j ∣ = r − 1. (Again, implementations can take either choice. We will assume a
maximum query to take the latter choice and all other queries the former. More on the
choice of r for a given query is discussed in Section 3.4. Our analysis will assume two new
gaps replace a former gap as a result of each query. Duplicate queries or queries that fall
in a gap of size one follow similarly, in O(logn) time.) We allow duplicate insertions.

Our performance theorem is the following.

Theorem 13 (Lazy search tree runtimes). Let n be the total number of elements currently
in the data structure and let {∆i} be defined as above (thus ∑m

i=1 ∣∆i∣ = n). Let q denote the
total number of queries. Lazy search trees support the operations of a sorted dictionary
on a dynamic set S in the following runtimes:

• Construction(S) in O(n) worst-case time, where ∣S∣ = n.

• Insert(e) in O(min(log(n/∣∆i∣) + log log ∣∆i∣, log q)) worst-case time1, where e =
(k, v) is such that k ∈ ∆i.

• RankBasedQuery(r) in O(x log c + logn) amortized time, where the larger resulting
gap from the split is of size cx and the other gap is of size x.

1 To simplify formulas, we distinguish between log2(x), the binary logarithm for any x > 0, and log(x),
which we define as max(log2(x),1).
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• Delete(ptr) in O(logn) worst-case time.

• ChangeKey(ptr, k′) in O(min(log q, log log ∣∆i∣)) worst-case time, where the element
pointed to by ptr, e = (k, v), has k ∈ ∆i and k′ moves e closer to its closest query
rank2 in ∆i; otherwise, ChangeKey(ptr, k′) takes O(logn) worst-case time.

• Split(r) in time according to RankBasedQuery(r).

• Merge(T1,T2) in O(logn) worst-case time.

Define3 B = ∑m
i=1 ∣∆i∣ log2(n/∣∆i∣). Then over a series of insertions and queries with no

duplicate queries, the total complexity is O(B +min(n log logn,n log q)).

We can also bound the number of pointers needed in the data structure.

Theorem 14 (Pointers). An array-based lazy search tree implementation requiresO(min(q, n))
pointers.

By reducing multiple selection to the sorted dictionary problem, we can show the fol-
lowing lower bound.

Theorem 15 (Lower bound). Suppose we process a sequence of operations resulting in
gaps {∆i}. Again define B = ∑m

i=1 ∣∆i∣ log2(n/∣∆i∣). Then this sequence of operations
requires B −O(n) comparisons and Ω(B + n) time in the worst case.

Theorem 15 indicates that lazy search trees are at most an additiveO(min(n log logn,n log q))
term from optimality over a series of insertions and distinct queries. This gives a lower
bound on the per-operation complexity of RankBasedQuery(r) of Ω(x log c); the bound
can be extended to Ω(x log c+ logn) if we amortize the total work required of splitting gaps
to each individual query operation. A lower bound of Ω(min(log(n/∣∆i∣), logm)) can be
established on insertion complexity via information theory. We describe all lower bounds
in Section 3.5.

We give specific examples of how lazy search trees can be used and how to analyze its
complexity according to Theorem 13 in the following subsection.

2 The closest query rank of e is the closest boundary of ∆i that was created in response to a query. For
gaps ∆i with 1 ≠ i ≠ m, this is the boundary of ∆i that is closer with respect to the rank of k. Gaps ∆1

and ∆m may follow similarly to i ≠ 1,m if a minimum or maximum has been extracted. With a single gap
∆1, increase-key is supported efficiently if maximums have been removed and decrease-key is supported
efficiently if minimums have been removed. If both have been removed, the gap functions as in the general
case for i ≠ 1,m. Intuitively, this is configured to support the behavior of decrease-key/increase-key without
special casing when the data structure is used as a min-heap/max-heap.

3The bound B relates to entropy in the following way: Consider a random variable X denoting the gap
to which an element of S selected uniformly at random currently resides. Then B = n ⋅H(X).
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3.1.2 Example Scenarios

Below, we give examples of how the performance of Theorem 13 is realized in different
operation sequences. While tailor-made data structures for many of these applications are
available, lazy search trees provide a single data structure that seamlessly adapts to the
actual usage pattern while achieving optimal or near-optimal performance for all scenarios
in a uniform way.

1. Few Queries: The bound B = ∑m
i=1 ∣∆i∣ log2(n/∣∆i∣) satisfies B = O(n log q + q logn).

In the worst case, queries are uniformly distributed, and the lower bound B =
Θ(n log q + q logn). Over a sequence of insertions and queries without duplicate
queries, our performance is optimal O(n log q + q logn). If q = nε for constant ε > 0,
lazy search trees improve upon binary search trees by a factor 1/ε. If q = O(logc n)
for some c, lazy search trees serve the operation sequence in O(cn log logn) time and
if q = O(1), lazy search trees serve the operation sequence in linear time. Although
it is not very difficult to modify a previous “deferred data structure” to answer a
sequence of n insertions and q queries in O(n log q + q logn) time (see Section 3.2.1),
to the best of our knowledge, such a result has not appeared in the literature.

2. Clustered Queries: Suppose the operation sequence consists of q/k “range queries”,
each requesting k consecutive keys, with interspersed insertions following a uniform
distribution. Here, B = O(n log(q/k) + q logn), where q is the total number of keys
requested. If the queried ranges are uniformly distributed, B = Θ(n log(q/k)+q logn),
with better results possible if the range queries are non-uniform. Our performance on
this operation sequence is O(B+min(n log logn,n log q)), tight with the lower bound
if k = Θ(1) or q/k = Ω(logn). Similarly to Scenario 1, we pay O(n log(q/k)) in total
for the first query of each batch; however, each successive query in a batch costs
only O(logn) time as the smaller resulting gap of the query contains only a single
element. We will see in Section 3.5 that we must indeed pay Ω(logn) amortized
time per query in the worst case; again our advantage is to reduce insertion costs.
Note that if an element is inserted within the elements of a previously queried batch,
these insertions take O(logn) time. However, assuming a uniform distribution of
element insertion throughout, this occurs on only an O(q/n) fraction of insertions in
expectation, at total cost O(n ⋅ q/n ⋅ logn) = O(q logn). Other insertions only need
an overall O(n log(q/k) +min(n log logn,n log q)) time.

3. Selectable Priority Queue: If every query is for a minimum element, each query
takes O(logn) time and separates the minimum element into its own gap and all
other elements into another single gap. Removal of the minimum destroys the gap
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containing the minimum element, leaving the data structure with a single gap ∆1. All
inserted elements fall into this single gap, implying insertions take O(log logn) time.
Further, the ChangeKey(ptr, k′) operation supports decrease-key in O(log logn)
time, since all queries (and thus the closest query) are for rank 1. Queries for other
ranks are also supported, though if queried, these ranks are introduced into the
analysis, creating more gaps and potentially slowing future insertion and decrease-
key operations, though speeding up future selections. The cost of a selection is
O(x log c + logn) amortized time, where x is the distance from the rank selected to
the nearest gap boundary (which was created at the rank of a previous selection) and
c = ∣∆i∣/x − 1, where the selection falls in gap ∆i. If no selections have previously
occurred, x is the smaller of the rank or n minus the rank selected and c = n/x − 1.

Interestingly, finding the kth smallest element in a binary min-heap can be done in
O(k) time [97], yet we claim our runtime optimal! The reason is that neither runtime
dominates in an amortized sense over the course of n insertions. Our lower bound
indicates that Ω(B +n) time must be taken over the course of multiple selections on
n elements in the worst case. In Frederickson’s algorithm, the speed is achievable
because a binary heap is more structured than an unprocessed set of n elements
and only a single selection is performed; the ability to perform further selection on
the resulting pieces is not supported. On close examination, lazy search trees can
be made to answer the selection query alone without creating additional gaps in
O(x + logn) amortized time or only O(x) time given a pointer to the gap in which
the query falls (such modification requires fulfilling Rules (B) and (C) on category A
intervals in Section 3.7.2).

4. Double-Ended Priority Queue: If every query is for the minimum or maximum
element, again each query takes O(logn) time and will separate either the minimum
or maximum element into its own gap and all other elements into another single gap.
The new gap is destroyed when the minimum or maximum is extracted. As there is
only one gap ∆1 when insertions occur, insertions take O(log logn) time. In this case,
our data structure natively supports an O(log logn) time decrease-key operation for
keys of rank n/2 or less and an O(log logn) time increase-key operation for keys of
rank greater than n/2. Further flexibility of the change-key operation is discussed in
Section 3.7.4.

5. Online Dynamic Multiple Selection: Suppose the data structure is first con-
structed on n elements. (A close analysis of insert in Section 3.7.1 shows that alter-
natively, we can construct the data structure on an empty set and achieve O(1) time
insertion before a query is performed.) After construction, a set of ranks {ri} are se-
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lected, specified online and in any order. Lazy search trees will support this selection
in O(B) time, where B = ∑m

i=1 ∣∆i∣ log2(n/∣∆i∣) is the lower bound for the multi-
ple selection problem [147]. We can further support additional insertions, deletions
and queries. Data structures for online dynamic multiple selection were previously
known [19, 20], but the way we handle dynamism is more efficient, allowing for all
the use cases mentioned here. We discuss this in Section 3.2.

6. Split By Rank: Lazy search trees can function as a data structure for repeated
splitting by rank, supporting construction on an initial set of n elements in O(n)
time, insertion into a piece of size n in O(log logn) time, and all splitting within
a constant factor of the information-theoretic lower bound. Here, the idea is that
we would like to support the operations insert and split at rank r, returning two
pieces of a data structure of the same form. In a sense, this is a generalization of
priority queues, where instead of extracting the minimum, we may extract the k
smallest elements, retaining the ability to perform further extractions on either of
the two pieces returned. As in scenario 3, the cost of splitting is O(x log c + logn),
where x is the number of elements in the smaller resulting piece of the split, and we
define c so that the number of elements in the larger resulting piece of the split is cx.
Again, O(x log c+ logn) is optimal. Note that we could also use an O(log logn) time
change-key operation for this application, though this time complexity only applies
when elements are moved closer to the nearest split rank. If repeatedly extracting the
k smallest elements is desired, this corresponds to an O(log logn) time decrease-key
operation.

7. Incremental Quicksort: A version of our data structure can perform splits inter-
nally via selecting random pivots with expected time complexity matching the bounds
given in Theorem 13. (We initially describe a version using exact selection, which
is conceptually simpler but less practical.) The data structure can then be used to
extract the q smallest elements in sorted order, online in q, via an incremental quick-
sort. Here, B = Θ(q logn) and our overall time complexity is O(n + q logn), which
is optimal up to constant factors4. Previous algorithms for incremental sorting are
known [196, 190, 208, 15]; however, our algorithm is extremely flexible, progressively
sorting any part of the array in optimal time O(B + n) while also supporting inser-
tion, deletion, and efficient change-key. The heap operations insert and decrease-key
are performed in O(log logn) time instead of O(logn), compared to existing heaps
based on incremental sorting [189, 190]; see also [77, 42]. Our data structure also uses

4Note that n + q logn = Θ(n + q log q). If the q logn term dominates, q = Ω(n/ logn) and so logn =
Θ(log q).
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only O(min(q, n)) pointers, providing many of the same advantages of sorting-based
heaps. A more-complicated priority queue based on similar ideas to ours achieves
Fibonacci heap amortized complexity with only a single extra word of space [181].

We discuss the advantages and disadvantages of our model and data structure in the
following subsections.

3.1.3 Advantages

The advantages of lazy search trees are as follows:

1. Superior runtimes to binary search trees can be achieved when queries are infrequent
or non-uniformly distributed.

2. A larger operation set, with the notable exception of efficient general merging, is made
possible when used as a priority queue, supporting operations within an additive
O(n log logn) term of optimality, in our model.

3. Lazy search trees can be implemented to use only O(min(q, n)) pointers, operating
mostly on arrays. This suggests smaller memory footprint, better constant factors,
and better cache performance compared to many existing efficient priority queues or
binary search trees. Our data structure is not built on the heap-ordered tree blueprint
followed by many existing efficient priority queues [99, 101, 53, 46, 82, 128, 41, 129].
Instead, we develop a simple scheme based on unordered lists that may of independent
interest. In particular, we are hopeful our data structure or adaptations thereof
may provide a theoretically-efficient priority queue that gets around the practical
inefficiencies associated with Fibonacci heaps [99] and its derivatives.

4. While not a corollary of the model we consider, lazy search trees can be made to sat-
isfy all performance theorems with regards to access time satisfied by splay trees. In
this way, lazy search trees can be a powerful alternative to the splay tree. Locality of
access can decrease both access and insertion times. This is discussed in Section 3.11.

3.1.4 Disadvantages

The weaknesses of lazy search trees are as follows:

1. Our gap-based model requires inserted elements be placed in a gap immediately in-
stead of delaying all insertion work until deemed truly necessary by query operations.
In particular, a more powerful model would ensure that the number of comparisons
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performed on an inserted element depends only on the queries executed after that
element is inserted. There are operation sequences where this can make a Θ(logn)
factor difference in overall time complexity, but it is not clear whether this property
is important on operation sequences arising in applications.

2. We currently do not know whether the additive O(min(n log q, n log logn)) term in
the complexity described in Theorem 13 over a sequence of insertions and queries is
necessary. Fibonacci heaps and its variants show better performance is achievable in
the priority queue setting. In Section 3.9, we show the (essentially) O(log log ∣∆i∣)
terms for insertion and change-key can be improved to a small constant factor if the
(new) rank of the element is drawn uniformly at random from valid ranks in ∆i. As a
priority queue, this corresponds with operation sequences in which binary heaps [236]
provide constant time insertion.

3. The worst-case complexity of a single RankBasedQuery(r) can be O(n). Further,
unlike amortized search trees like the splay tree [217], the average case complexity
is not necessarily O(logn). By delaying sorting, our lower bound indicates that we
may need to spend Θ(n) time to answer a query that splits a gap of size ∣∆i∣ = Θ(n)
into pieces of size x and cx for c = Θ(1). Further, aside from an initial O(logn) time
search, the rest of the time spent during query is on writes, so that over the course of
the operation sequence the number of writes is Θ(B+n). In this sense, our algorithm
functions more similarly to a lazy quicksort than a red-black tree [22], which requires
only Θ(n) writes regardless of operation sequence.

3.1.5 Chapter Organization

We organize the remainder of the chapter as follows. In the following section, Section 3.2,
we discuss related work. In Section 3.3, we give a high-level overview of the technical chal-
lenge. In Section 3.4, we formalize the definition of the queries we support. In Section 3.5,
we discuss lower bounds in our gap-based model. In Section 3.6, we show how lazy search
trees perform insertions, queries, deletions, and change-key operations. We analyze the
costs of these operations in Section 3.7. In Section 3.8, we explain how binary search tree
bulk-update operations split and merge can be performed on lazy search trees. We show in
Section 3.9 that the complexity of insertion and change-key can be improved with a weak
average-case assumption. In Section 3.10, we show that exact selection in our query algo-
rithm can be replaced with randomized pivoting while achieving the same expected time
complexity. In Section 3.11, we show how splay trees can be used with lazy search trees
and show that lazy search trees can be made to support efficient access theorems. We give
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concluding remarks, open problems, and briefly discuss a proof-of-concept implementation
in Section 3.12.

3.2 Related Work
Lazy search trees unify several distinct research fields. The two largest, as previously
discussed, are the design of efficient priority queues and balanced binary search trees. We
achieved our result by developing an efficient priority queue and lazy binary search tree
simultaneously. There are no directly comparable results to our work, but research in
deferred data structures and online dynamic multiple selection comes closest. We further
discuss differences between dynamic optimality and our work.

3.2.1 Deferred Data Structures

To our knowledge, the idea of deferred data structures was first proposed by Karp, Motwani,
and Raghavan in 1988 [157]. Similar ideas have existed in slightly different forms for
different problems [219, 34, 44, 17, 21, 13, 125, 6]. The term “deferred data structure” has
been used more generally for delaying processing of data until queries make it necessary,
but we focus on works for one-dimensional data here, as it directly pertains to the problem
we consider.

Karp, Motwani and Raghavan [157] study the problem of answering membership queries
on a static, unordered set of n elements in the comparison model. One solution is to
construct a binary search tree of the data in O(n logn) time and then answer each query
in O(logn) time. This is not optimal if the number of queries is small. Alternatively,
we could answer each query in O(n) time, but this is clearly not optimal if the number
of queries is large. Karp et al. determine the lower bound of Ω((n + q) log(min(n, q))) =
Ω(n log q + q logn) time to answer q queries on a static set of n elements in the worst case
and develop a data structure that achieves this complexity.

This work was extended in 1990 to a dynamic model. Ching, Melhorn, and Smid show
that q′ membership queries, insertions, and deletions on an initial set of n0 unordered
elements can be answered inO(q′ log(n0+q′)+(n0+q′) log q′) = O(q′ logn0+n0 log q′+q′ log q′)
time [60]. When membership, insertion, and deletion are considered as the same type of
operation, this bound is optimal.

It is not very difficult (although not explicitly done in [60]) to modify the result of Ching
et al. to obtain a data structure supporting n insertions and q′′ membership or deletion
operations in O(q′′ logn + n log q′′) time, the runtime we achieve for uniform queries. We
will see in Section 3.3 that the technical difficulty of our result is to achieve the fine-
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grained complexity based on the query-rank distribution. For more work in one-dimensional
deferred data structures, see [219, 34, 44, 17, 21, 125].

3.2.2 Online Dynamic Multiple Selection

The optimality of Karp et al. [157] and Ching et al. [60] is in a model where the ranks
requested of each query are not taken into account. In the multiple selection problem,
solutions have been developed that consider this information in the analysis. Suppose we
wish to select the elements of ranks r1 < r2 < ⋯ < rq amongst a set of n unordered elements.
Define r0 = 0, rq+1 = n, and ∆i as the set of elements of rank greater than ri−1 and at most
ri. Then ∣∆i∣ = ri − ri−1 and as in Theorem 13, B = ∑m

i=1 ∣∆i∣ log2(n/∣∆i∣). The information-
theoretic lower bound for multiple selection is B −O(n) comparisons [72]. Solutions have
been developed that achieve O(B+n) time complexity [72] or B+o(B)+O(n) comparison
complexity [147].

The differences between the multiple selection problem and deferred data structuring
for one-dimensional data are minor. Typically, deferred data structures are designed for
online queries, whereas initial work in multiple selection considered the setting when all
query ranks are given at the same time as the unsorted data. Solutions to the multiple
selection problem where the ranks r1, . . . , rq are given online and in any order have also
been studied, however [18]. Barbay et al. [19, 20] further extend this model to a dynamic
setting: They consider online dynamic multiple selection where every insertion is preceded
by a search for the inserted element. Deletions are ultimately performed in O(logn) time.
Their data structure uses B + o(B) +O(n + q′ logn) comparisons, where q′ is the number
of search, insert, and delete operations. The crucial difference between our solution and
that of Barbay et al. [19, 20] is how we handle insertions. Their analysis assumes every
insertion is preceded by a search and therefore insertion must take Ω(logn) time. Thus, for
their result to be meaningful (i.e., allow o(n logn) performance), the algorithm must start
with an initial set of n0 = n ± o(n) elements. While Barbay et al. focus on online dynamic
multiple selection algorithms with near-optimal comparison complexity, the focus of lazy
search trees is on generality. We achieve similar complexity as a data structure for online
multiple selection while also achieving near-optimal performance as a priority queue. We
discuss the technical challenges in achieving this generality in Section 3.3.

3.2.3 Dynamic Optimality

As mentioned, the dynamic optimality conjecture has received vast attention in the past
four decades [8, 67, 68, 143, 35, 218, 234, 164, 52]. The original statement conjectures
that the performance of the splay tree is within a constant factor of the performance
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of any binary search tree on any sufficiently long access sequence [217]. To formalize
this statement, in particular the notion of “any binary search tree”, the BST model of
computation has been introduced, forcing the data structure to take the form of a binary
tree with access from the root and tree rotations for updates. Dynamic optimality is
enticing because it conjectures splay trees [217] and a related “greedy BST” [67] to be within
a constant factor of optimality on any sufficiently long access sequence. This per-instance
optimality [90] is more powerful than the sense of optimality used in less restricted models,
where it is often unattainable. Any sorting algorithm, for example, must take Ω(n logn)
time in the worst case, but on any particular input permutation, an algorithm designed to
first check for that specific permutation can sort it in O(n) time: simply apply the inverse
permutation and check if the resulting order is monotonic.

The bounds we give in Section 3.5 are w. r. t. the worst case over operation sequences
based on distribution of gaps {∆i}, but hold for any comparison-based data structure.
Hence, lazy search trees achieve a weaker notion of optimality compared to dynamic opti-
mality, but do so against a vastly larger class of algorithms.

Since splay trees, greedy BSTs, and lazy search trees are all implementations of sorted
dictionaries and conjectured dynamically optimal, it is insightful to contrast the access
theorems of dynamically-optimal BSTs with the improvements given in Theorem 13. Su-
perficially, the two notions are orthogonal, with dynamic optimality allowing only queries,
and our bound becoming interesting mostly when insertions and queries are mixed. On
the other hand, the form of performance improvements achievable are indeed quite similar,
as the following property shows.

Definition 16 (Static Optimality [162, 8, 217]). Let S denote the set of elements in the
data structure and let qx denote the number of times element x is accessed in a sequence
of m accesses. Assume every element is accessed at least once. A data structure is said to
achieve static optimality if the cost to perform any such access sequence is

O(m +∑
x∈S

qx log(m/qx)).

Historically, research into optimal binary search trees started with this notion of static
optimality, and both splay trees and greedy BSTs have been shown to be statically opti-
mal [217, 95]. Contrast the bound given in Definition 16 with the bound O(B + n), where
again we define B = ∑m

i=1 ∣∆i∣ log2(n/∣∆i∣). If we replace qx and m in Definition 16 with ∣∆i∣
and n, respectively, they are exactly the same: the savings for query costs arising from
repeated accesses with nonuniform access probabilities equal the savings for insertion costs
when query ranks are nonuniform.
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3.3 Technical Overview
This research started with the goal of generalizing a data structure that supports n in-
sertions and q ≤ n rank-based queries in O(n log q) time. Via a reduction from multiple
selection, Ω(n log q) comparisons are necessary in the worst case. However, by applying
the fine-grained analysis based on rank distribution previously employed in the multiple
selection literature [72], a new theory which generalizes efficient priority queues and binary
search trees is made possible.

As will be discussed in Section 3.5, to achieve optimality on sequences of insertion and
distinct queries with regards to the fine-grained multiple selection lower bound, insertion
into gap ∆i should take O(log(n/∣∆i∣)) time. A query which splits a gap ∆i into two
gaps of sizes x and cx (c ≥ 1), respectively, should take O(x log c + logn) time. These
complexities are the main goals for the design of the data structure.

The high-level idea will be to maintain elements in a gap ∆i in an auxiliary data
structure (the interval data structure of Section 3.6). All such auxiliary data structures
are then stored in a biased search tree so that access to the ith gap ∆i is supported in
O(log(n/∣∆i∣)) time. This matches desired insertion complexity and is within the O(logn)
term of query complexity. The main technical difficulty is to support efficient insertion
and repeated splitting of the auxiliary data structure.

Our high-level organization is similar to the selectable sloppy heap of Dumitrescu [74].
The difference is that while the selectable sloppy heap keeps fixed quantile groups in a
balanced search tree and utilizes essentially a linked-list as the auxiliary data structure, in
our case the sets of elements stored are dependent on previous query ranks, the search tree
is biased, and we require a more sophisticated auxiliary data structure.

Indeed, in the priority queue case, the biased search tree has a single element ∆1, and
all operations take place within the auxiliary data structure. Thus, we ideally would like to
support O(1) insertion and O(x log c) split into parts of size x and cx (c ≥ 1) in the auxiliary
data structure. If the number of elements in the auxiliary data structure is ∣∆i∣, we can
imagine finding the minimum or maximum as a split with x = 1 and c = ∣∆i∣ − 1, taking
O(log ∣∆i∣) time. However, the ability to split at any rank in optimal time complexity is
not an operation typically considered for priority queues. Most efficient priority queues
store elements in heap-ordered trees, providing efficient access to the minimum element
but otherwise imposing intentionally little structure so that insertion, decrease-key, and
merging can all be performed efficiently.

Our solution is to group elements within the auxiliary data structure in the following
way. We separate elements into groups (“intervals”) of unsorted elements, but the elements
between each group satisfy a total order. Our groups are of exponentially increasing size
as distance to the gap boundary increases. Within a gap ∆i, we maintain O(log ∣∆i∣) such
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groups. Binary search then allows insertion and key change in O(log log ∣∆i∣) time. While
not O(1), the structure created by separating elements in this way allows us to split the
data structure in about O(x) time, where x is the distance from the split point to the
closest query rank. Unfortunately, several complications remain.

Consider if we enforce the exponentially-increasing group sizes in the natural way in
data structure design. That is, we select constants c1 ≤ c2 such that as we get farther
from the gap boundary, the next group is at least a factor c1 > 1 larger than the previous
but at most a factor c2. We can maintain this invariant while supporting insertion and
deletion, but splitting is problematic. After splitting, we must continue to use both pieces
as a data structure of the same form. However, in the larger piece, the x elements removed
require restructuring not only the new closest group to the gap boundary but could require
a cascading change on all groups. Since the elements of each group are unstructured, this
cascading change could take Ω(∣∆i∣) time.

Thus, we must use a more flexible notion of “exponentially increasing" that does not
require significant restructuring after a split. This is complicated by guaranteeing fast
insertion and fast splits in the future. In particular, after a split, if the larger piece is again
split close to where the previous split occurred, we must support this operation quickly,
despite avoiding the previous cascading change that would guarantee this performance.
Further, to provide fast insertion, we must keep the number of groups at O(log ∣∆i∣), but
after a split, the best way to guarantee fast future splits is to create more groups.

We will show that it is possible to resolve all these issues and support desired opera-
tions efficiently by applying amortized analysis with a careful choice of structure invariants.
While we do not achieve O(1) insertion and decrease-key cost, our data structure is com-
petitive as an efficient priority queue while having to solve the more complicated issues
around efficient repeated arbitrary splitting.

3.4 Rank-Based Queries
We formalize operation RankBasedQuery(r) as follows. We first describe what we call an
aggregate function.

Definition 17 (Aggregate function). Let S be a multiset of comparable elements and let
f(S) be a function5 computed on those elements. Suppose S′ is such that S′ differs from
S by the addition or removal of element x. Let n = max(∣S∣, ∣S′∣). Then f is an aggregate

5We do not actually require a strict function f(S) = y for a set S, but rather can let the aggregate
function depend on the queries that dynamically change that set. In particular, we can (initially) map
f(S) = minS or f(S) = maxS and change this value to decrease/increase monotonically as S is updated,
even if the minimum/maximum is removed.
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function maintainable in g(n) time if f(S′) can be computed from f(S) and x in g(n)
time.

We focus on aggregates with g(n) = O(1), though in principle any g(n) can be supported
with appropriate changes to overall runtime complexity. We formalize rank-based queries
as follows.

Definition 18 (Rank-based query). Call a query on a multiset of comparable elements S
such that ∣S∣ = n a rank-based query pertaining to rank r if the following two conditions
are satisfied:

1. Consider if S is split into two sets X and Y such that for all x ∈ X, y ∈ Y , x ≤ y.
It must be possible, based on an aggregate function f on X and Y , to reduce the
query to a query that can be answered considering only the elements of X or only
the elements of Y . The query rank r should be such that if the query is reduced to
X, r ≤ ∣X ∣, and if the query is reduced to Y , ∣X ∣ < r.

2. It must be possible to answer the query on S in O(n) time.

Critical to our analysis is the rank r associated with each RankBasedQuery(r) opera-
tion. We associate with each operation a rank r which must be contained in each subprob-
lem according to a recursion based on Definition 18. Amongst a set of unsorted elements,
r can be chosen arbitrarily, but whichever rank is chosen will affect the restructuring and
change the complexity of future operations. Implementation decisions may change r to be
r − 1 or r + 1; such one-off errors do not have measured effect on complexity, as long as the
extract minimum or extract maximum queries result in a single gap ∆1.

The following well-studied operations fit our definition of rank-based query with ranks
r as described; the aggregate function is either the cardinality of the set or a range of keys
for the set.

• Rank(k) ∶= Determine the rank of key k. Rank r is the rank of k in S.

• Select(r) ∶= Select the element of rank r in S. Rank r is the rank selected.

• Contains(k) ∶= Determine if an element (k, v) is represented in S (and if so,
returns v). Rank r is the rank of k in S.

• Successor(k) ∶= Determine the successor of key k in S. Rank r is the rank of the
successor of k.

• Predecessor(k) ∶= Determine the predecessor of key k in S. Rank r is the rank of
the predecessor of k.

53



• Minimum() ∶= Return a minimum element of S. Rank r is 1.

• Maximum() ∶= Return a maximum element of S. Rank r is n.

On edge cases where the successor or predecessor does not exist, we can define r to be
n or 1, respectively. Similarly, in the case (k, v) is represented in S on a Rank(k) or
Contains(k) query, we must pick a tie-breaking rule for rank r returned consistent with
the implemented recursion following Definition 18.

3.5 Lower and Upper Bounds
The balanced binary search tree is the most well-known solution to the sorted dictionary
problem. It achieves O(logn) time for a rank-based query and O(logn) time for all dy-
namic operations. Via a reduction from sorting, for a sequence of n arbitrary operations,
Ω(n logn) comparisons and thus Ω(n logn) time is necessary in the worst case.

However, this time complexity can be improved by strengthening our model. The
performance theorems of the splay tree [217] show that although Ω(q logn) time is necessary
on a sequence of q arbitrary queries on n elements, many access sequences can be answered
in o(q logn) time. Our model treats sequences of element insertions similarly to the splay
tree’s treatment of sequences of element access. Although Ω(n logn) time is necessary on
a sequence of n insert or query operations, on many operation sequences, o(n logn) time
complexity is possible, as the theory of efficient priority queues demonstrates.

Our complexities are based on the distribution of elements into the set of gaps {∆i}.
We can derive a lower bound on a sequence of operations resulting in a set of gaps {∆i}
via reducing multiple selection to the sorted dictionary problem. We prove Theorem 15
below.

Proof of Theorem 15. We reduce multiple selection to the sorted dictionary problem. The
input of multiple selection is a set of n elements and ranks r1 < r2 < ⋯ < rq. We are required
to report the elements of the desired ranks. We reduce this to the sorted dictionary problem
by inserting all n elements in any order and then querying for the desired ranks r1, . . . , rq,
again in any order.

Define r0 = 0, rq+1 = n, and ∆i as the set of elements of rank greater than ri−1 and
at most ri. (This definition coincides with the gaps resulting in our data structure when
query rank r falls in the new gap ∆′

i, described in Section 3.1.1.) Then ∣∆i∣ = ri − ri−1 and
as in Theorem 13, B = ∑m

i=1 ∣∆i∣ log2(n/∣∆i∣). Note that here, m = q + 1. The information-
theoretic lower bound for multiple selection is B −O(n) comparisons [72]. Since any data
structure must spend Ω(n) time to read the input, this also gives a lower bound of Ω(B+n)
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time. This implies the sorted dictionary problem resulting in a set of gaps {∆i} must use
at least B −O(n) comparisons and take Ω(B + n) time, in the worst case.

Remark 19 (Multiple selection inputs). For the operation sequence from the proof of
Theorem 15, Theorem 13 states our performance as O(B + min(n log q, n log logn)). A
closer examination of our data structure in Section 3.7.1 shows we actually achieve O(B+n)
complexity on such sequences, since insertions performed before any queries actually take
O(1) time.

To achieve the performance stated in Theorem 15 on any operation sequence, we will
first consider how the bound Ω(B+n) changes with insertions and queries. This will dictate
the allotted (amortized) time we can spend per operation to achieve an optimal complexity
over the entire operation sequence.

We give the following regarding insertion time; recall our convention from Footnote 1
(page 41) that log(x) = max(log2(x),1) and log2 is the binary logarithm.

Lemma 20 (Influence of insert on lower bound). Suppose we insert an element into gap
∆i. Then the bound Ω(B + n) increases by Ω(log(n/∣∆i∣)).

Proof. The insertion simultaneously increases ∣∆i∣ and n, but we will consider the effect
of these changes separately. We first keep n unchanged and consider how B changes in
gap ∆i. Before insertion, the contribution to B for gap ∆i is ∣∆i∣ log2(n/∣∆i∣); after the
insertion it is (∣∆i∣ + 1) log2(n/(∣∆i∣ + 1)). Therefore, the change is

(∣∆i∣ + 1) log2(n/(∣∆i∣ + 1)) − ∣∆i∣ log2(n/∣∆i∣). (3.1)

Consider the function f(x) = x log2(n/x), where we treat n as a constant. Then (3.1) is
at least the minimum value of the derivative f ′(x) with x ∈ [∣∆i∣, ∣∆i∣ + 1]. The derivative
of f(x) is f ′(x) = − log2(e) + log2(n/x). This gives that the change in B is at least
− log2(e) + log2(n/∣∆i∣).

Now consider the effect of making n one larger. This will only increase B; by the
bound Ω(B + n), this change is (at least) Ω(1). We may therefore arrive at an increase of
Ω(log2(n/∣∆i∣) + 1) = Ω(log(n/∣∆i∣)).

Lemma 20 implies that optimal insertion complexity is Ω(log(n/∣∆i∣)). This bound is
using the fact the change in the set of gaps {∆i} resulting from an insertion corresponds
to a multiple selection problem with lower bound greater by Ω(log(n/∣∆i∣)). Since the
multiple selection problem itself has insertions preceding queries, this lower bound is in
some sense artificial. However, we can alternatively consider the problem of determining
in which gap an inserted element falls. Here, information theory dictates complexities of
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Ω(logm) if each gap is weighted equally or Ω(log(n/∣∆i∣)) if gap ∆i is weighted with weight
∣∆i∣ [24]. The latter corresponds with the change in B noted above.

We now give the following regarding query time.

Lemma 21 (Influence of query on lower bound). Suppose a query splits a gap ∆i into
two gaps of size x and cx, respectively, with c ≥ 1. Then the bound Ω(B + n) increases by
Ω(x log c).

Proof. The change in B is

x log2 (
n

x
) + cx log2 (

n

cx
) − (c + 1)x log2 (

n

(c + 1)x) . (3.2)

By manipulating logarithms and canceling terms, we can rearrange (3.2) to x((c+1) log2(c+
1)−c log2 c), which is greater than x log2(c+1). Thus the increase in Ω(B+n) is Ω(x log c).

Lemma 21 gives a lower bound of Ω(x log c) per rank-based query operation. Here, the
bound is not artificial in any sense: insertions precede queries in the reduction of multiple
selection to the sorted dictionary problem. We must spend time Ω(x log c) to answer the
query as more queries may follow and the total complexity must be Ω(B +n) in the worst
case.

We can improve the query lower bound by considering the effect on B over a sequence
of gap-splitting operations. Consider the overall bound B = ∑m

i=1 ∣∆i∣ log2(n/∣∆i∣). It can
be seen that B = Ω(m logn). Therefore, we can afford amortized O(logn) time whenever
a new gap is created, even if it is a split say with x = 1, c = 1.

Consider the lower bound given by the set of gaps {∆i} in Theorem 15 combined
with the above insight that queries must take Ω(logn) time. If query distribution is not
considered, the worst case is that ∣∆i∣ = Θ(n/q) for all i. Then B + q logn = Ω(n log q +
q logn). This coincides with the lower bound given in [157].

It is worth noting that both Lemma 20 and Lemma 21 can also be proven by information-
theoretic arguments, without appealing to the algebraic bound B given in multiple selec-
tion. The number of comparisons to identify the x largest elements in a set of (c + 1)x
elements is log ((c+1)x

x
), which is Ω(x log c). A similar argument can be made that increasing

n by 1 and category ∆i by 1 implies the number of comparisons required of the underlying
selection problem increases by Ω(log(n/∆i)).
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3.6 Data Structure
We are now ready to discuss the details of lazy search trees. The high-level idea was
discussed in Section 3.3. The data structure as developed is relatively simple, though it
requires a somewhat tricky amortized time analysis given in the following section.

We split the data structure into two levels. At the top level, we build a data structure
on the set of gaps {∆i}. In the second level, actual elements are organized into a set of
intervals within a gap. Given a gap ∆i, intervals within ∆i are labeled Ii,1,Ii,2, . . . ,Ii,`i ,
with `i the number of intervals in gap ∆i. The organization of elements of a gap into
intervals is similar to the organization of elements into a gap. Intervals partition a gap
by rank, so that for elements x ∈ Ii,j, y ∈ Ii,j+1, x ≤ y. Elements within an interval are
unordered. By convention, we will consider both gaps and intervals to be ordered from left
to right in increasing rank. A graphical sketch of the high-level decomposition is given in
Figure 3.1.

I1,1 I1,2 I1,3 I1,4 I1,5 I1,6 I2,1 I2,2 I2,3 I2,4 I2,5 I2,6 I2,7 I2,8 I3,1 I3,2 I3,3 I3,4

∆1 ∆2 ∆3Gaps:

Intervals:

Figure 3.1: The two-level decomposition into gaps {∆i} and intervals {Ii,j}.

3.6.1 The Gap Data Structure

We will use the following data structure for the top level.

Lemma 22 (Gap Data Structure). There is a data structure for the set of gaps {∆i} that
supports the following operations in the given worst-case time complexities. Note that
∑m
i=1 ∣∆i∣ = n.

1. Given an element e = (k, v), determine the index i such that k ∈ ∆i, in O(log(n/∣∆i∣))
time.

2. Given a ∆i, increase or decrease the size of ∆i by 1, adjusting n accordingly, in
O(log(n/∣∆i∣)) time.

3. Remove ∆i from the set, in O(logn) time.

4. Add a new ∆i to the set, in O(logn) time.
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It is also possible to store aggregate functions within the data structure (on subtrees), as
required by some queries that fit Definition 18.

Proof. We can use, for example, a globally-biased 2, b tree [24]. We assign gap ∆i the
weight wi = ∣∆i∣; the sum of weights, W , is thus equal to n. Access to gap ∆i, operation 1,
is handled in O(log(n/∣∆i∣)) worst-case time [24, Thm. 1]. By [24, Thm. 11], operation 2
is handled via weight change in O(log(n/∣∆i∣)) worst-case time. Again by [24, Thm. 11],
operations 3 and 4 are handled in O(logn) worst-case time or better.

Remark 23 (Alternative implementations). A variety of biased search trees can be used as
the data structure of Lemma 22. In Section 3.11, we suggest splay trees for that purpose,
which greatly simplifies implementation at the cost of making the runtimes amortized.
What is more, we show that efficient access properties of the data structure of Lemma 22
can be inherited by the lazy search tree, hence the (orthogonal) efficiency gains for in-
sertions in lazy search trees and for structured access sequences in splay trees can be
had simultaneously. We also show that a suitable implementation can treat the gap data
structure as a merely conceptual abstraction that is not itself implemented; instead it can
operate directly on intervals. That further reduces the overhead of an implementation.

The top level data structure allows us to access a gap in the desired time complexity
for insertion. However, we must also support efficient queries. In particular, we need
to be able to split a gap ∆i into two gaps of size x and cx (c ≥ 1) in amortized time
O(x log c). We must build additional structure amongst the elements in a gap to support
such an operation efficiently. At the cost of this organization, in the worst case we pay an
additional O(log log ∣∆i∣) time on insertion and key-changing operations.

3.6.2 The Interval Data Structure

We now discuss the data structure for the intervals. Given a gap ∆i, intervals Ii,1,Ii,2, . . . ,Ii,`i
are contained within it and maintained in a data structure as follows. We maintain with
each interval the two splitting keys (kl, kr) that separate this interval from its predecessor
and successor (using −∞ and +∞ for the outermost ones), respectively; the interval only
contains elements e = (k, v) with kl ≤ k ≤ kr. Note that we also must maintain similar
router keys at the gap level in the data structure of Lemma 22 to determine in which gap
an element falls. We store intervals in sorted order in an array (see Remark 25), sorted
with respect to (kl, kr). We can then find an interval containing a given key k, i.e., with
kl ≤ k ≤ kr, using binary search in O(log `i) time.

Remark 24 (Handling duplicate keys). Recall that we allow repeated insertions, i.e.,
elements with the same key k. As detailed in Section 3.6.5, intervals separated by a
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splitting key k can then both contain elements with key k. To guide the binary search in
these cases, we maintain for each interval the number of elements with keys equal to the
splitting keys kl and kr.

As we will see below, the number of intervals in one gap is always O(logn), and only
changes during a query, so we can afford to update this array on query in linear time.

Remark 25 (Avoiding arrays). Note that, to stay within the pointer-machine model, we
can choose to arrange the intervals within any gap in a balanced binary search tree, thus
providing the binary search without array accesses. This also allows to add new intervals
efficiently. In practice, binary search on an array is likely to be preferred.

We conceptually split the intervals into two groups: intervals on the left side and
intervals on the right side. An interval is defined to be in one of the two groups by the
following convention.

(A) Left and right intervals: An interval Ii,j in gap ∆i is on the left side if the closest
query rank (edge of gap ∆i if queries have occurred on both sides of ∆i) is to the
left. Symmetrically, an interval Ii,j is on the right side if the closest query rank is on
the right. An interval with an equal number of elements in ∆i on its left and right
sides can be defined to be on the left or right side arbitrarily.

Recall the definition of closest query rank stated in Footnote 2. The closest query rank
is the closest boundary of gap ∆i that was created in response to a query.

We balance the sizes of the intervals within a gap according to the following rule:

(B) Merging intervals: Let Ii,j be an interval on the left side, not rightmost of left side
intervals. We merge Ii,j into adjacent interval to the right, Ii,j+1, if the number of
elements left of Ii,j in ∆i equals or exceeds ∣Ii,j ∣ + ∣Ii,j+1∣. We do the same, reflected,
for intervals on the right side.

The above rule was carefully chosen to satisfy several components of our analysis. As
mentioned, we must be able to answer a query for a rank r near the edges of ∆i efficiently.
This implies we need small intervals near the edges of gap ∆i, since the elements of each
interval are unordered. However, we must also ensure the number of intervals within a
gap does not become too large, since we must determine into which interval an inserted
element falls at a time cost outside of the increase in B as dictated in Lemma 20. We end
up using the structure dictated by Rule (B) directly in our analysis of query complexity,
particularly in Section 3.7.2.

Note that Rule (B) causes the loss of information. Before a merge, intervals Ii,j and
Ii,j+1 are such that for any x ∈ Ii,j and y ∈ Ii,j+1, x ≤ y. After the merge, this information
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is lost. Surprisingly, this does not seem to impact our analysis. Once we pay the initial
O(log `i) cost to insert an element via binary search, the merging of intervals happens
seldom enough that no additional cost need be incurred.

Rule (B) ensures the following.

Lemma 26 (Few intervals). Within a gap ∆i, there are at most 4 log(∣∆i∣) intervals.

Proof. First consider intervals on the left side. Let intervals Ii,j+1 and Ii,j+2 be on the left
side. It must be that the number of elements in intervals Ii,j+1 and Ii,j+2 together is equal
to or greater than the number of elements in the first j intervals, by Rule (B). Indeed, the
worst-case sequence of interval sizes is 1,1,1,2,2,4,4,8,8,16,16, . . ., obtained recursively
as a1 = a2 = 1 and aj = a1 +⋯ + aj−2 + 1 − aj−1. It follows that with every two intervals, the
total number of elements at least doubles; indeed we can show that the first k intervals
contain at least (

√
2)k+2 elements, therefore n elements are spread over at most 2 log2 n−2

intervals. To count intervals on the left resp. right side in ∆i, we observe that the maximal
number of intervals occurs if half of the elements are on either side, so there can be at most
2 ⋅ (2 log2(∣∆i∣/2) − 2) ≤ 4 log(∣∆i∣) intervals in gap ∆i.

For ease of implementation, we will invoke Rule (B) only when a query occurs in gap
∆i. In the following subsection, we will see that insertion does not increase the number
of intervals in a gap, therefore Lemma 26 will still hold at all times even though Rule (B)
might temporarily be violated after insertions. We can invoke Rule (B) in O(log ∣∆i∣) time
during a query, since ∣∆i∣ ≤ n and we can afford O(logn) time per query.

3.6.3 Representation of Intervals

It remains to describe how a single interval is represented internally. Our analysis will
require that merging two intervals can be done in O(1) time and further that deletion from
an interval can be performed in O(1) time (O(logn) time actually suffices for O(logn) time
delete overall, but on many operation sequences the faster interval deletion will yield better
runtimes). Therefore, the container in which elements reside in intervals should support
such behavior. An ordinary linked list certainly suffices; however, we can limit the number
of pointers used in our data structure by representing intervals as a linked list of arrays.
Whenever an interval is constructed, it can be constructed as a single (expandable) array.
As intervals merge, we perform the operation in O(1) time by merging the two linked lists
of arrays. Deletions can be performed lazily, shrinking the array when a constant fraction
of the entries have been deleted.

We analyze the number of pointers required of this method and the resulting improved
bounds on insertion and key change in Section 3.7.5. If we choose not to take advantage
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of this directly, we can alternatively replace standard linked lists with linked list/array
hybrids such as unrolled linked lists [215], which will likely outperform standard linked
lists in practice.

3.6.4 Insertion

Insertion of an element e = (k, v) can be succinctly described as follows. We first determine
the gap ∆i such that k ∈ ∆i, according to the data structure of Lemma 22. We then binary
search the O(log ∣∆i∣) intervals (by maintaining “router” keys separating the intervals)
within ∆i to find the interval Ii,j such that k ∈ Ii,j. We increase the size of ∆i by one in
the gap data structure.

Remark 27 (A single data structure). The attentive reader may wonder why we must
first perform a binary search for gap ∆i and then perform another binary search for interval
Ii,j within ∆i. It seems likely these two binary searches can be compressed into one, and
indeed, this intuition is correct. If preferred, we can use the data structure of Lemma 22
directly on intervals within gaps, so that weight ∣∆i∣ is evenly distributed over intervals
Ii,1,Ii,2, . . . ,Ii,`i . (Alternatively, assigning weight ∣∆i∣/`i + ∣Ii,j ∣ to interval Ii,j can provide
better runtimes in average case settings.) Unfortunately, doing so means only an O(logn)
time change-key operation can be supported (unless the data structure is augmented fur-
ther), and (small) weight changes must be performed on the full set of intervals within gap
∆i on insertion and deletion. While such a data structure is possible, we find the current
presentation more elegant and simpler to implement.

Remark 28 (Lazy insert). One seemingly-obvious way to improve insertion complexity,
improving perhaps either of the first two disadvantages listed in Section 3.1.4, is to insert
lazily. That is, instead of performing a full insert of e = (k, v) through the gap data
structure and then again through the interval data structure, we keep a buffer at each node
of the respective BSTs with all the elements that require processing at a later time. While
this can improve overall time complexity on some simple operation sequences, it seems
difficult to make this strategy efficient overall, when insertions, deletions and queries can
be mixed arbitrarily.

So while improving either of the two disadvantages listed in Section 3.1.4 (and indeed,
an improvement in one may imply an improvement in the other) would likely utilize aspects
of lazy insertion, we do not currently see a way to achieve this by maintaining buffers on
nodes of the BSTs we use.
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3.6.5 Query

To answer a query with associated rank r, we proceed as follows. We again determine
the gap ∆i such that r ∈ ∆i according to the process described in Definition 18 on the
data structure of Lemma 22. While we could now choose to rebalance the intervals of ∆i

via Rule (B), our analysis will not require application of Rule (B) until the end of the
query procedure. We recurse into the interval Ii,j such that r ∈ Ii,j, again using the process
described in Definition 18 on the intervals of ∆i (this may use aggregate information stored
in the data structure for intervals).

We proceed to process Ii,j by answering the query on Ii,j and replacing interval Ii,j
with smaller intervals. First, we partition Ii,j into sets L and R, such that all elements in
L are less than or equal to all elements in R and there are r elements in the entire data
structure which are either in L or in an interval or gap left of L. This can typically be
done in O(∣Ii,j ∣) time using the result of the query itself; otherwise, linear-time selection
suffices [32].

We further partition L into two sets of equal size Ll and Lr, again using linear-time
selection, such that all elements in Ll are smaller than or equal to elements in Lr; if ∣L∣
is odd, we give the extra element to Ll (unsurprisingly, this is not important). We then
apply the same procedure one more time to Lr, again splitting into equal-sized intervals.
Recursing further is not necessary. We do the same, reflected, for set R; after a total of 5
partitioning steps the interval splitting terminates. An example is shown in Figure 3.2.

∣Ii,j ∣ = 19

interval Ii,j

query
rank
r = 6

3 2 1 3 3 7

⇒

L R

Figure 3.2: An interval Ii,j is split and replaced with a set of intervals.

Remark 29 (Variants of interval replacement). There is some flexibility in designing this
interval-replacement procedure; the critical property needed for our result is the following;
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(details of which will become clear in Section 3.7.2): It yields (1) at most O(log ∣∆i∣)
intervals in gap ∆i (typically by application of Rule (B)), (2) it satisfies an invariant
involving a credit system – Invariant (C) on page 65 – and (3) splitting takes time O(∣Ii,j ∣).
In Section 3.10, we show that exact median selection (when splitting L, Lr, R, and Rl)
can be replaced with pivoting on a randomly chosen element. On a set of n elements,
this requires only n comparisons instead of the at least 1.5n required by median-finding in
expectation [63], and it is substantially faster in practice.

After splitting the interval Ii,j as described above, we answer the query itself and update
the gap and interval data structures as follows. We create two new gaps ∆′

i and ∆′
i+1 out

of the intervals of gap ∆i including those created from sets L and R. Intervals that fall left
of the query rank r are placed in gap ∆′

i, and intervals that fall right of the query rank r
are placed in gap ∆′

i+1. We update the data structure of Lemma 22 with the addition of
gaps ∆′

i and ∆′
i+1 and removal of gap ∆i. Finally, we apply Rule (B) to gaps ∆′

i and ∆′
i+1.

3.6.6 Deletion

To delete an element e = (k, v) pointed to by a given pointer ptr, we first remove e from
the interval Ii,j such that k ∈ Ii,j. If e was the only element in Ii,j, we remove interval
Ii,j from gap ∆i (we can do so lazily, when Rule (B) is next run on gap ∆i). Then we
decrement ∆i in the gap data structure of Lemma 22; if that leaves an empty gap, we
remove ∆i from the gap data structure.

3.6.7 Change-Key

The change-key operation can be performed as follows. Suppose we wish to change the key
of element e = (k, v), given by pointer ptr, to k′, and that e currently resides in interval
Ii,j in gap ∆i. We first check if k′ falls in ∆i or if e should be moved to a different gap. If
the latter, we can do so as in deletion of e and re-insertion of (k′, v). If the former, we first
remove e from Ii,j. If necessary, we (lazily) delete Ii,j from ∆i if Ii,j now has no elements.
We then binary search the O(log ∣∆i∣) intervals of ∆i and place e into the new interval in
which it belongs.

Note that although this operation can be performed to change the key of e to anything,
Theorem 13 only guarantees runtimes faster than O(logn) when e moves closer to its
nearest query rank within gap ∆i. Efficient runtimes are indeed possible in a variety of
circumstances; this is explored in more detail in Section 3.7.4.
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3.7 Analysis
We use an amortized analysis [224]. We will use a potential function with a built-in credit
system. Recall that our desired insertion complexity is about O(log(n/∣∆i∣)) time. On a
query that splits a gap into two gaps of size x and cx, we attempt to do so in (amortized)
O(logn + x log c) time. We require several definitions before we may proceed.

We distinguish between 0-sided, 1-sided, and 2-sided gaps. A 2-sided gap is a gap ∆i

such that queries have been performed on either side of ∆i; thus, intervals in ∆i are split
into intervals on the left side and intervals on the right side. This is the typical case. A
1-sided gap ∆i is such that queries have only been performed on one side of the gap; thus,
intervals are all on the side towards the query rank in ∆i. There can be at most two
1-sided gaps at any point in time. In the priority queue case, there is a single 1-sided gap.
The final category is a 0-sided gap; when the data structure has performed no queries, all
elements are represented in a single interval in a single 0-sided gap.

We now give the following functional definitions.

c(Ii,j) ∶= # of credits associated with interval Ii,j.
o(Ii,j) ∶= # of elements outside Ii,j in ∆i, i. e.,

# of elements in ∆i that are left (right) of Ii,j if Ii,j is on the left (right) side.
M ∶= total # of elements in 0-sided or 1-sided gaps.

As previously mentioned, intervals are defined to be on either the left or right side
according to Rule (A) (page 59). For an interval Ii,j in a 2-sided gap ∆i, o(Ii,j) hence
is the minimum number of elements either to the left (less than) or to the right (greater
than) Ii,j in gap ∆i.

The rules for assigning credits are as follows: A newly created interval has no credits
associated with it. During a merge, the credits associated with both intervals involved in
the merge may be discarded; they are not needed. When an interval Ii,j is split upon a
query, it is destroyed and new intervals (with no credits) are created from it; by destroying
Ii,j, the c(Ii,j) credits associated with it are released.

We use the following potential function:

Φ = 10M + 4∑
1≤i≤m,
1≤j≤`i

c(Ii,j).

Credits accumulated when an operation is cheaper than its amortized bound increase Φ;
in this way, we use credits to pay for work that will need to be performed in the future.
We do so by maintaining the following invariant:
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(C) Credit invariant: Let Ii,j be an interval. Then ∣Ii,j ∣ ≤ c(Ii,j) + o(Ii,j).

Remark 30 (Intuition behind Invariant (C)). The intuition behind Invariant (C) is that
the cost of splitting Ii,j is entirely paid for by the credits associated with Ii,j and by outside
elements, i.e., either released potential or by the distance to previous queries causing
a corresponding increase in B. The intervals constructed from the elements of Ii,j are
constructed in such a way that they satisfy Invariant (C) at cost a constant fraction of the
cost of splitting Ii,j.

Remark 31 (Alternative potential function). It is possible to remove the credits in our
potential function and Invariant (C) and instead use the potential function

Φ = 10M + 4∑
1≤i≤m,
1≤j≤`i

max(∣Ii,j ∣ − o(Ii,j),0).

We opt for the current method as we believe it is easier to work with.

Observe that before any elements are inserted, Φ = 0, and we have a single 0-sided
gap with one interval containing no elements. Thus Invariant (C) is vacuously true. We
proceed with an amortized analysis of the operations. For our amortization arguments, we
assume the potential function to be adjusted to the largest constant in the O(⋅) notation
necessary for the complexity of our operations. In the interest of legibility, we will drop
this constant and compare outside of O(⋅) notation, as is standard in amortized complexity
analysis.

3.7.1 Insertion

Insertion of element e = (k, v) can be analyzed as follows. As stated in Lemma 22, we pay
O(log(n/∣∆i∣)) time to locate the gap ∆i that e belongs into. We adjust the size of ∆i and n
by one in the data structure of Lemma 22 in O(log(n/∣∆i∣)) time. By Lemma 26, there are
O(log ∣∆i∣) intervals in gap ∆i, and so we spend O(log log ∣∆i∣) time to do a binary search
to find the interval Ii,j that e belongs into. We increase the size of Ii,j by one and add
one credit to Ii,j to ensure Invariant (C). Thus the total amortized cost of insertion6 (up
to constant factors) is log(n/∣∆i∣) + log log ∣∆i∣ + 4 + 10 = O(log(n/∣∆i∣) + log log ∣∆i∣). Note
that if the data structure for Lemma 22 supports operations in worst-case time, insertion
complexity is also worst-case. We show in Section 3.7.5 that the bound O(log q) also holds.

We use the following lemma to show that Invariant (C) holds on insertion.
6Note that although log log ∣∆i∣ can be o(log logn), there is no difference between

O(∑q+1
i=1 ∣∆i∣(log(n/∣∆i∣) + log logn)) and O(∑q+1

i=1 ∣∆i∣(log(n/∣∆i∣) + log log ∣∆i∣). When the log logn
term in a gap dominates, ∣∆i∣ = Ω(n/ logn), so log logn = Θ(log log ∣∆i∣).
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Lemma 32 (Insert maintains Invariant (C)). Updating side designations according to
Rule (A) after insertions preserves Invariant (C).

Proof. The insertion of additional elements may cause an interval Ii,j′ in the middle of ∆i

to change sides. This occurs exactly when the number of elements on one side exceeds the
number of elements on the other side. However, before this insertion occurred, Invariant (C)
held with an equal number of elements on both sides of Ii,j′ . Since we do not change the
number of credits associated with Ii,j′ , in effect, o(Ii,j′) just changes which side it refers to,
monotonically increasing through all insertions. It follows Invariant (C) holds according
to redesignations via Rule (A) after insertions.

Invariant (C) then holds on insertion due to Lemma 32 and since o(Ii,j′) only possibly
increases for any interval Ii,j′ , j′ ≠ j, with ∣Ii,j′ ∣ remaining the same; recall that an extra
credit was added to interval Ii,j to accommodate the increase in ∣Ii,j ∣ by one.

Note that from an implementation standpoint, no work need be done for intervals Ii,j′
on insertion, even if they change sides. Any readjustment can be delayed until the following
query in gap ∆i.

3.7.2 Query

We now proceed with the analysis of a query. We split the analysis into several sections.
We first assume the gap ∆i in which the query falls is a 2-sided gap. We show Invariant (C)
implies we can pay for the current query. We then show how to ensure Invariant (C) holds
after the query. Finally, we make the necessary adjustments for the analysis of queries in
0-sided and 1-sided gaps. Recall that our complexity goal to split a gap into gaps of size
x and cx (c ≥ 1) is O(logn + x log c) amortized time.

Current Query

For the moment, we assume the gap in which the query rank r satisfies r ∈ ∆i is a 2-sided
gap. Further, assume the query rank r falls left of the median of gap ∆i, so that the
resulting gaps are a gap ∆′

i of size x and a gap ∆′
i+1 of size cx (c ≥ 1). A picture is given

in Figure 3.3. The case of query rank r falling right of the median of ∆i is symmetric.
It takes O(log(n/∣∆i∣)) = O(logn) time via the data structure of Lemma 22 to find the

gap ∆i. We then find the interval Ii,j such that r ∈ Ii,j. By Definition 18, answering the
query on the set of unsorted elements Ii,j can be done in O(∣Ii,j ∣) time. Splitting interval
Ii,j as described in Section 3.6.5 can also be done in O(∣Ii,j ∣) time.

Updating the data structure of Lemma 22 with the addition of gaps ∆′
i and ∆′

i+1 and
removal of gap ∆i can be done in O(logn) time. Similarly, the total number of intervals
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Figure 3.3: A query that splits Ii,j in gap ∆i.

created from the current query is no more than 6, and no more than O(log ∣∆i∣) intervals
existed in gap ∆i prior to the query, again by Lemma 26. Thus, applying Rule (B) to
gaps ∆′

i and ∆′
i+1 after the query takes no more than O(log ∣∆i∣) = O(logn) time, because

merging two intervals can be done in O(1) time.
We next show that merging of intervals according to Rule (B) will preserve Invari-

ant (C).

Lemma 33 (Merge maintains (C)). Suppose interval Ii,j is merged into interval Ii,j′ (note
j′ = j + 1 if Ii,j is on the left side and j′ = j − 1 if Ii,j is on the right side), according to
Rule (B). Then the interval Ii,j′ after the merge satisfies Invariant (C).

Proof. Suppose interval Ii,j is merged into interval Ii,j′ according to Rule (B). Then
o(Ii,j) ≥ ∣Ii,j ∣ + ∣Ii,j′ ∣. This implies that after the merge, o(Ii,j′) ≥ ∣Ii,j′ ∣, since elements
outside the merged interval Ii,j′ are outside both of the original intervals. Thus Ii,j′ satisfies
Invariant (C) without any credits.

In total, we pay O(logn + ∣Ii,j ∣) actual time. As the O(logn) component is consistent
with the O(logn) term in our desired query complexity, let us focus on the O(∣Ii,j ∣) term.
We have the following.

Lemma 34 (Amortized splitting cost). Consider a query which falls in interval Ii,j and
splits gap ∆i into gaps of size x and cx. Then ∣Ii,j ∣ − c(Ii,j) ≤ x.

Proof. By Invariant (C), ∣Ii,j ∣ − c(Ii,j) ≤ o(Ii,j). Now, since ∆i is a 2-sided gap, o(Ii,j) is
the lesser of the number of elements left or right of Ii,j. Since the query rank r satisfies
r ∈ Ii,j, this implies o(Ii,j) ≤ x (See Figure 3.3 for a visual depiction).
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We can apply amortized analysis with Lemma 34 as follows. Interval Ii,j is destroyed
and intervals that are built from its contents have no credits. Thus, 4c(Ii,j) units of
potential are released. By applying Lemma 34, we can use c(Ii,j) units of this released
potential to bound the cost ∣Ii,j ∣ with x. This gives an amortized cost thus far of logn+x−
3c(Ii,j). We will use the extra 3c(Ii,j) units of potential in the following section, ensuring
Invariant (C) holds for future operations.

Ensuring Invariant (C)

We must ensure Invariant (C) holds on all intervals in gaps ∆′
i and ∆′

i+1. Again, we will
suppose ∆′

i is the smaller gap of the two, so that ∆′
i has x elements and ∆′

i+1 has cx
elements; the other case is symmetric.

Let us first consider gap ∆′
i. This gap contains intervals from ∆i outside of Ii,j as well

as intervals made from the elements of Ii,j. Observe (cf. Figure 3.3) that gap ∆′
i has in

total x elements. Therefore, we can trivially ensure Invariant (C) holds by adding enough
credits to each interval of ∆′

i to make it so, at total amortized cost at most 4x. Let us do
this after applying Rule (B) to ∆′

i, so it is balanced and satisfies Invariant (C).
We now consider gap ∆′

i+1 after rebalancing according to Rule (B). The application of
Rule (B) after the query may cause some intervals to change sides towards the query rank
r and subsequently merge. Intervals created from Ii,j may also merge (this may be because
Rule (B) was applied lazily or even because the largest interval created from Ii,j may be
on the opposite side of the rest of the intervals created from interval Ii,j). In total, the
intervals of ∆′

i+1 fall into four distinct categories. Recall that when we apply Rule (B), we
merge an interval Ii,j′ into interval Ii,j′′ , so we assume the identity of the merged interval
as Ii,j′′ , and interval Ii,j′ ceases to exist.

We call the four categories A, B, C, and D, and show how to ensure Invariant (C) on
each of them. Category A are intervals that are created from Ii,j that fall on the side of the
query rank r so as to become ∆′

i+1 intervals after the query. Category B are intervals on
the same side as Ii,j before the query which were located inward from Ii,j in ∆i. Category
C are intervals that were on the opposite side of interval Ii,j before the query, but now
switch sides due to the removal of the gap ∆′

i. Finally, category D are intervals that lie
on the opposite side of interval Ii,j both before and after the query. A picture is given in
Figure 3.4.
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Figure 3.4: Gap ∆′
i+1 after query within interval Ii,j of ∆i. The picture assumes Ii,j was

a left-side interval.

We proceed with ensuring Invariant (C) on each category.

• Category D: Category D intervals are easiest. These intervals are not affected by
the query and thus still satisfy Invariant (C) with no additional cost.

• Category A: Now consider category A intervals. Three such intervals, I ′i+1,1, I ′i+1,2,
and I ′i+1,3, are created in the query algorithm stated in Section 3.6.5. The leftmost
and middlemost intervals, I ′i+1,1 and I ′i+1,2, have size 1

4 ∣R∣ ± 1, and the rightmost
interval I ′i+1,3 has size 1

2 ∣R∣± 1; (the ±1 addresses the case that ∣R∣ is not divisible by
4).

Up to one element, I ′i+1,2 has at least as many elements outside of it as within it. Thus
after giving it one credit, I ′i+1,2 satisfies Invariant (C). Similarly, I ′i+1,3 will remain on
the same side in most cases, and thus will also have enough elements outside it from
the other two intervals (potentially after giving it one credit, too). But we always
have to assign credits to I ′i+1,1. Moreover, if interval Ii,j was very large, then I ′i+1,3

may actually switch sides in the new gap ∆′
i+1.

In the worst case, we will require credits to satisfy Invariant (C) on both I ′i+1,1 and
I ′i+1,3. As their sizes total 3

4 ∣R∣+O(1), at 4 units of potential per credit the amortized
cost to do so is no more than 3∣Ii,j ∣ +O(1). We can use the extra 3c(Ii,j) units of
potential saved from Section 3.7.2 to pay for this operation. By applying Lemma 34
again, we can bound 3∣Ii,j ∣−3c(Ii,j) with 3x, bringing the amortized cost of satisfying
Invariant (C) on category A intervals to O(x).

• Categories B and C: We’ll handle category B and C intervals together. First
observe that since x elements were removed with the query, we can bound the number
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of credits necessary to satisfy Invariant (C) on a single interval in category B or C
with either x or the size of that interval. For category C intervals, this follows because
they had more elements on their left side prior to the query, thus upon switching sides
after the query, x credits will suffice to satisfy Invariant (C), similarly to the proof
of Lemma 32. In the new gap ∆′

i+1, let j′ be the smallest index such that ∣Ii+1,j′ ∣ ≥ x.
We will handle category B and C intervals left of Ii+1,j′ and right of Ii+1,j′ differently.

Let us first consider category B and C intervals left of interval Ii+1,j′ . All such
intervals have size less than x. If there are less than two such intervals, we may apply
x credits to each to ensure Invariant (C) at total cost O(x). Otherwise, consider
intervals Ii+1,j′−2 and Ii+1,j′−1. Due to application of Rule (B) after the query, intervals
Ii+1,j′−2 and Ii+1,j′−1 make up more than half of the total number of elements left of
interval Ii+1,j′ . Since ∣Ii+1,j′−2∣ < x and ∣Ii+1,j′−1∣ < x, it follows there are no more
than 4x elements located in intervals left of interval Ii+1,j′ in gap ∆′

i+1. For each such
interval, we add at most the size of the interval in credits so that Invariant (C) holds
on all intervals left of Ii+1,j′ in gap ∆′

i+1. The total cost is O(x).
Now consider intervals right of Ii+1,j′ . If there are less than two such intervals, we may
apply x credits to each to ensure Invariant (C) at total cost O(x). Otherwise, consider
intervals Ii+1,j′+1 and Ii+1,j′+2. By Rule (B) after the query, ∣Ii+1,j′+1∣ + ∣Ii+1,j′+2∣ > x,
since interval Ii+1,j′ is outside intervals Ii+1,j′+1 and Ii+1,j′+2 and ∣Ii+1,j′ ∣ ≥ x by choice of
j′. Similarly, if such intervals are category B or C intervals, then ∣Ii+1,j′+3∣+∣Ii+1,j′+4∣ >
2x and ∣Ii+1,j′+5∣ + ∣Ii+1,j′+6∣ > 4x. In general, ∣Ii+1,j′+2k−1∣ + ∣Ii+1,j′+2k∣ > 2k−1x for any k
where intervals Ii+1,j′+2k−1 and Ii+1,j′+2k are category B or C intervals. Since there are
cx total elements in gap ∆′

i+1, it follows the number of category B and C intervals
right of Ii+1,j′ is O(log c). We may then apply x credits to all such intervals and
interval Ii+1,j′ for a total cost of O(x log c).

Altogether, we can ensure Invariant (C) for future iterations at total O(x log c) amor-
tized cost.

0-Sided and 1-Sided Gaps

We proceed with a generalization of the previous two sections for when the gap ∆i in
which the query falls is a 0-sided or 1-sided gap. If gap ∆i is 0-sided, we spend O(n) time
to answer the query, according to Definition 18 on a set of n unsorted elements. Since
Invariant (C) is satisfied prior to the query, 4n credits are released. Quantity M does
not change. Thus, 4n units of potential are released, giving amortized time n − 4n = −3n.
All intervals in the data structure resulting from the query are category A intervals. The
analysis of the preceding section for category A intervals applies. We can pay O(x) to
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satisfy Invariant (C) on the smaller gap, and the remaining 3n units of released potential
are enough to guarantee Invariant (C) holds on all intervals in the larger gap.

Now suppose ∆i is 1-sided. If the query rank r is closer to the side of ∆i on which
queries have been performed, then the same analysis of the preceding sections suffices. Note
that there will be neither category C nor category D intervals. The creation of 2-sided
gap ∆′

i out of elements of 1-sided gap ∆i will cause 10x additional units of potential to be
released due to the decrease in M ; these units are not used in this case.

We are left with the case ∆i is 1-sided and the query rank r is closer to the side of ∆i on
which queries have not been performed; suppose without loss of generality that previously
only the right endpoint of ∆i has been queried and r is closer to the left endpoint. In this
case, the creation of 2-sided gap ∆′

i+1 out of elements of 1-sided gap ∆i will cause 10cx
units of potential to be released due to the decrease in M . Since c ≥ 1, this is at least
5∣∆i∣ units of potential. We use them as follows. Answering the query takes no more than
O(∣∆i∣) time, and ensuring intervals satisfy Invariant (C) in new gaps ∆′

i and ∆′
i+1 after

the query similarly takes no more than ∣∆i∣ credits, which costs 4∣∆i∣ units of potential.
Thus, in total this takes no more than ∣∆i∣ + 4∣∆i∣ − 5∣∆i∣ = O(1) amortized time.

Putting the preceding three sections together, we may answer a query in O(logn+ x log c)
time while ensuring Invariant (C) for future operations.

3.7.3 Deletion

The analysis of deletion of e = (k, v) pointed to by ptr is as follows. The element e can be
removed from the interval in which it resides in O(1) time. Removing said interval lazily,
if applicable, takes O(1) time. If the gap in which e resides also needs removal, Lemma 22
says doing so will take O(logn) time.

In any case, when element e ∈ ∆i is deleted, we must ensure Invariant (C) on the
remaining intervals of ∆i. If e was outside of an interval Ii,j, o(Ii,j) decreases by one.
Thus, for any such intervals, we pay one credit to ensure Invariant (C) remains satisfied.
Thus in accordance with Lemma 26, this takes O(log ∣∆i∣) total credits.

The total amortized cost is thus no more than O(logn + log ∣∆i∣) = O(logn). If the
data structure of Lemma 22 supports operations in worst-case time, this runtime is also
worst-case.

3.7.4 Change-Key

We analyze the change-key operation as follows. Suppose ptr points to element e = (k, v)
and we change its key as described in Section 3.6.7 to k′. If k′ falls outside gap ∆i, O(logn)
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complexity follows from deletion and re-insertion of (k′, v). Otherwise, the binary search in
∆i takes O(log log ∣∆i∣) time, again by Lemma 26. To ensure Invariant (C) on the intervals
of ∆i, as is the case for deletion, we must pay one credit per interval e is no longer outside
of. Thus, the key-change operation takes at most O(log ∣∆i∣) time; however, if we change
the key of e towards the nearest query rank, we can show Invariant (C) is satisfied without
spending any credits.

At any point in time, all intervals in ∆i are classified as being on the left side or the
right side according to the closest query rank, in accordance to Rule (A). Any element of
a left-side interval can have its key decreased, while only increasing or keeping constant
the number of elements outside of any other left-side interval. The same is true for key
increases of elements in right side intervals.

Now consider if e ∈ Ii,j and Ii,j is the rightmost interval on the left side. Then we can
also increase the key of e while keeping the same or increasing the number of elements
outside of any interval in ∆i. The same is true of decreasing the key of an element in
the leftmost interval on the right side. Since the median of ∆i falls in either the leftmost
interval of the right side or the rightmost interval of the left side, it follows that we can
ensure Invariant (C) as long as the element whose key changes moves closer to its nearest
query rank. Note that this analysis holds even as intervals change side designations due
to insertions; for a refresher of this analysis see the proof of Lemma 32. This is despite
delaying the application of Rule (B) until the following query in gap ∆i.

This proves our statement in Theorem 13 about change-key. The dichotomy displayed
therein between cheap and expensive key changes can be refined as follows. Suppose c ≥ 2
is such that e is located between (gap-local) ranks ∣∆i∣/c and ∣∆i∣ − ∣∆i∣/c in ∆i; then we
can change its key arbitrarily in O(log log ∆i+ log c) time. This is because of the geometric
nature of interval sizes. Intervals are highly concentrated close to the edges of gap ∆i

in order to support queries that increase B very little, efficiently. Thus, we can support
arbitrary key changes in O(log log ∣∆i∣) time for the vast majority of the elements of gap
∆i, since ensuring Invariant (C) will only require a constant number of credits, and the
performance smoothly degrades as the changed elements get closer to previous query ranks.

A second refinement is that we can change e arbitrarily without paying any credits if
an insertion closer to the endpoint of gap ∆i has happened before said key-change, but
after the query that created ∆i: such insertion increases the number of elements outside
of all intervals that are potentially affected by moving e closer to the middle of ∆i, thus
no credits have to be supplied. A similar argument shows that the time complexity of
deletion is only O(1) if an element was previously inserted closer to the gap endpoint than
the deleted element. We point out again that, from the perspective of the data structure,
these savings are realized automatically and the data structure will always run as efficiently
as possible; the credits are only an aspect of the analysis, not our algorithms.
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In the following section, we show that a bound on the number of created intervals can bound
the number of pointers required of the data structure and the insertion and change-key
complexities when the number of queries is small.

3.7.5 Pointer Bound and Improved Insertion and Change-Key

The preceding sections show insertion into gap ∆i in O(log(n/∣∆i∣)+ log log ∣∆i∣) time and
a change-key time complexity of O(log log ∣∆i∣). A bound of O(log q) can also be made,
which may be more efficient when q is small. We also prove the bound stated in Theorem 14
on the total number of pointers required of the data structure. We address the latter first.

Proof of Theorem 14. Each query (including Split(r) queries) creates at most 6 intervals,
and no other operations create intervals. The number of pointers required of all interval
data structures is linear in the number of total intervals created, bounded to at most n.
This is because elements within an interval are contiguous (in the sense an expandable
array is contiguous) unless the interval is a result of merged intervals, where we assume
that intervals are implemented as linked lists of arrays. Each merged interval must have
been created at some point in time, thus the bound holds. The number of pointers required
in the data structure of Lemma 22 is linear in the number of gaps (or intervals, if the data
structure operates directly over intervals), taking no more than O(min(q, n)) pointers, as
the number of intervals is O(min(q, n)).

The above proof shows that the number of intervals and gaps in the entire data structure
can be bounded by q. This implies the binary searches during insertion (both in the data
structure of Lemma 22 and in Section 3.6.4) and change-key operations take no more
than O(log q) time. This gives a refined insertion time bound of O(min(log(n/∣∆i∣) +
log log ∣∆i∣, log q)) and a change-key time bound of O(min(log q, log log ∣∆i∣)). To guarantee
an O(log q) time bound in the gap data structure, we can maintain all gaps additionally
in a standard balanced BST, with pointers between corresponding nodes in both data
structures. A query can alternatively advance from the root in both structures, succeeding
as soon as one search terminates. Updates must be done on both structures, but the
claimed O(logn) time bounds (for queries, delete, split, and merge) permit this behavior.

3.8 Bulk Update Operations
Lazy search trees can support binary search tree bulk-update operations. We can split a
lazy search tree at a rank r into two lazy search trees T1 and T2 of r and n − r elements,
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respectively, such that for all x ∈ T1, y ∈ T2, x ≤ y. We can also support a merge of two lazy
search trees T1 and T2 given that for all x ∈ T1, y ∈ T2, x ≤ y.

We state this formally in Lemma 35.

Lemma 35. Operation Split(r) can be performed on a lazy search tree in time the same
as RankBasedQuery(r). Operation Merge(T1,T2) can be performed on lazy search trees
in O(logn) worst-case time.

Proof. To perform operation Split(r), we first query for rank r in the lazy search tree.
We then split the data structure of Lemma 22 at the separation in gaps induced by the
query for rank r. Two lazy search trees result, with their own future per-operation costs
according to the number of elements and gaps that fall into each tree. Using a globally-
biased 2, b tree [24] with weights as in the proof of Lemma 22, the split takes O(logn)
worst-case time (Theorem 10 of [24]). The overall time complexity is dominated by the
query for rank r in the original tree, since queries take Ω(logn) time.

To perform operation Merge(T1,T2), we perform a merge on the data structures of
Lemma 22 associated with each lazy search tree. Future per-operation costs are adjusted
according to the union of all gaps and totaling of elements in the two lazy search trees
that are combined. Using a globally-biased 2, b tree [24] with weights as in the proof of
Lemma 22, the merge takes O(logn) worst-case time or better (Theorem 8 of [24]).

Lemma 35 completes the analysis for the final operations given in Theorem 13.

3.9 Average Case Insertion and Change-Key
Our time bounds from Theorem 13 are an additive O(log logn) away from the optimal
time of insertion and change-key; it turns out that in certain average-case scenarios, we
can indeed reduce this time to an optimal expected amortized time. The essential step will
be to refine the binary search within a gap to an exponential search.

3.9.1 Insert

Recall that we store intervals in a sorted array. We modify the insertion algorithm of the
interval data structure in Section 3.6.4 so that we instead perform a double binary search
(also called exponential search [27]), outward from the last interval on the left side and
first interval on the right side. This is enough to prove the following result.

Theorem 36 (Average-case insert). Suppose the intervals within a gap are balanced using
Rule (B) and further suppose insertions follow a distribution such that the gap in which an

74



inserted element falls can be chosen adversarially, but amongst the elements of that gap,
its rank is chosen uniformly at random. Then insertion into gap ∆i takes expected time
O(log(n/∣∆i∣)).

Proof. First note that the double binary search during insertion finds an interval that is k
intervals from the middlemost intervals in time O(log k); apart from constant factors, this
is never worse than the O(log `i) of a binary search.

The assumption on insertion ranks implies that the probability to insert into interval
Ii,j (out of the possible `i intervals in gap ∆i) is ∣Ii,j ∣/∣∆i∣±O(1/∣∆i∣), i.e., proportional to
its size. Recall that in a gap ∆i satisfying Lemma 26, interval sizes grow at least like (

√
2)k;

that implies the largest (middlemost) intervals contain a constant fraction of the elements
in ∆i; for these, insertion takes O(1) time. The same applies recursively: With every
outward step taken, the insertion procedure takes O(1) more time, while the number of
elements that fall in these intervals decreases by a constant factor. The expected insertion
time in the interval data structure is proportional to

∞
∑
k=1

log k

(
√

2)k
≤

∞
∑
k=1

k

(
√

2)k
= 4 + 3

√
2,

i.e., constant overall. Adding the O(log(n/∣∆i∣)) time to find the gap yields the claim.

Observe that walking from the largest intervals outward, instead of performing an
exponential search [27], is sufficient for the above analysis. However, the exponential search
also satisfies the worst case O(log logn) bound (more precisely O(min(log log ∣∆i∣, log q)))
described in Sections 3.6.4 and 3.7.1.

Remark 37 (Fast insertion without arrays). We can achieve the same effect if intervals
are stored in another biased search tree so that interval Ii,j receives weight ∣∆i∣/`i + ∣Ii,j ∣.

Theorem 36 assumes that intervals are balanced according to Rule (B). In Section 3.6,
we described balancing according to Rule (B) lazily. Keeping (B) balanced while insertions
or change-key operations occur, in the required time complexity, is nontrivial. We show it
can be done in O(1) amortized time below.

Lemma 38 (Strict merging). Given a gap ∆i, we can keep intervals in ∆i balanced ac-
cording to within a constant factor of the guarantee of Rule (B) in O(1) amortized time
per insertion into ∆i.

Proof. We utilize the exponentially-increasing interval sizes due to Lemma 26. We check
the outermost intervals about every operation and exponentially decrease checking fre-
quency as we move inwards. The number of intervals checked over k operations is O(k).
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The guarantee of Rule (B) is changed so that the number of elements left of Ii,j in ∆i is
no more than a constant times ∣Ii,j ∣ + ∣Ii,j+1∣ (reflected for right side intervals), to which
previous analysis holds.

3.9.2 Change-Key

If we apply Lemma 38, we can also support improved average-case change-key operations
in the following sense.

Theorem 39 (Average-case change-key). If a ChangeKey(ptr, k′) operation is performed
such that the element pointed to by ptr, e = (k, v), moves closer to its closest query rank
within its gap and the rank of k′ is selected uniformly at random from valid ranks, the
operation can be supported in O(1) expected time.

Proof. We again perform a double binary search (exponential search [27]) for the new
interval of e; this time we start at the interval Ii,j in which e currently resides and move
outwards from there. The analysis follows similarly to Theorem 36.

When used as a priority queue, Theorem 39 improves the average-case complexity of
decrease-key to O(1).

3.10 Randomized-Selection Variant
We can improve the practical efficiency of lazy search trees by replacing exact median-
finding in the query procedure with randomized pivoting. Specifically, after finding sets L
and R as described in Section 3.6.5, we then partition L into sets Ll and Lr by picking
a random element p ∈ L and pivoting so that all elements less than p are placed in set
Ll and all elements greater than p are placed in set Lr. To avoid biasing when elements
are not unique, elements equal to p should be split between Ll or Lr. We then repeat the
procedure one more time on set Lr. We do the same, reflected, for set R.

Remark 40 (Partitioning with equal keys). In our analysis, we assume for simplicity
that the number of elements with same key as p, including p itself, that are assigned to
the left segment is chosen uniformly at random from the number of copies. That implies
overall a uniform distribution for the size of the segments. Partitioning procedures as used
in standard implementations of quicksort [212] actually lead to slightly more balanced
splits [211]; they will only perform better. For practical implementations of lazy search
trees, choosing the partitioning element p as the median of a small sample is likely to
improve overall performance.
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Changing the query algorithm in this way requires a few changes in our analysis. The
analysis given in Section 3.7 is amenable to changes in constant factors in several locations.
Let us generalize the potential function as follows, where α is a set constant, such as α = 4
in Section 3.7. One can see from Section 3.7.2 that this will imply the constant in front of
M must be at least 2(α + 1).

Φ = 2(α + 1)M + α∑
1≤i≤m,
1≤j≤`i

c(Ii,j).

Insertion still takes O(min(log(n/∣∆i∣) + log log ∣∆i∣, log q)) time. As before, splitting
into sets L and R can typically be done in O(∣Ii,j ∣) deterministic time via the result of
the query, but if not, quickselect can be used for O(∣Ii,j ∣) expected (indeed with high
probability) time performance [136, 94, 159]. The modified pivoting procedure described
above for Ll and Lr is repeated in total 4 times. We can thus bound the complexity of
these selections at O(∣Ii,j ∣), regardless of the randomization used.

Then by application of Lemma 34, we reduce the current amortized time to split Ii,j to
O(x), leaving (α−1)c(Ii,j) units of potential to handle ensuring Invariant (C) on category
A intervals in Section 3.7.2.

The number of credits necessary to satisfy Invariant (C) on category A intervals is now
a random variable. Recall the arguments given in Section 3.7.2 and Section 3.7.2 regarding
category A intervals. As long as the (expected) number of credits to satisfy Invariant (C)
on category A intervals is at most a constant fraction γ of ∣Ii,j ∣, we can set α = 1

1−γ and the
amortized analysis carries through.

We have the following regarding the expected number of credits to satisfy Invariant (C)
on category A intervals using the randomized splitting algorithm.

Lemma 41. Suppose a query falls in interval Ii,j and the intervals built from the elements
of Ii,j are constructed using the randomized splitting algorithm. The expected number of
credits necessary to satisfy Invariant (C) on category A intervals after a query is no more
than 143

144 ∣Ii,j ∣ +O(1).

Proof. We prove the loose bound considering only one random event in which a constant
fraction of ∣Ii,j ∣ credits are necessary, which happens with constant probability.

We orient as in Section 3.7.2, assuming the larger new gap, ∆′
i+1, is right of the smaller

new gap, ∆′
i. We must consider the number of credits necessary to satisfy Invariant (C)

on the three category A intervals I ′i+1,1, I ′i+1,2, and I ′i+1,3 of new gap ∆′
i+1. The rightmost

interval I ′i+1,3 has size drawn uniformly at random in 1, . . . , ∣R∣, the leftmost, I ′i+1,1, takes
size uniformly at random from the remaining elements, and the middlemost interval I ′i+1,2

takes whatever elements remain.
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Suppose the rightmost interval I ′i+1,3 comprises a fraction of x = ∣I ′i+1,3∣/∣R∣ ∈ [1
3 ,

2
3
]

of all elements in R, and further suppose the leftmost interval I ′i+1,1 takes between 1/2
and 3/4 of the remaining elements, i.e., a fraction y = ∣I ′i+1,1∣/∣R∣ ∈ [1

2(1 − x), 3
4(1 − x)] of

the overall elements in R. In this case, it is guaranteed we require no credits to satisfy
Invariant (C) on the middlemost interval. The number of credits to satisfy Invariant (C) on
the rightmost and leftmost intervals is (x+ y)∣R∣, which is maximized at 11

12 ∣R∣. This event
happens with probability 1

3 ⋅ 1
4 −O (1/∣R∣) = 1

12 −O (1/∣R∣), where we include the O (1/∣R∣)
term to handle rounding issues with integer values of ∣R∣. As we never require more than
∣R∣ credits in any situation and ∣R∣ ≤ ∣Ii,j ∣, we can then bound the expected number of
necessary credits at 11

12 ⋅ ∣Ii,j ∣ + 1
12 ⋅ 11

12 ∣Ii,j ∣ +O(1) = 143
144 ∣Ii,j ∣ +O(1).

With Lemma 41, we can set α = 144 and use the remaining 143c(Ii,j) credits from
destroying Ii,j and bound 143∣Ii,j ∣ − 143c(Ii,j) with 143x via Lemma 34. All other query
analysis in Section 3.7.2 is exactly as before. This gives total expected amortized query
time O(logn + x log c) on 2-sided gaps. With a constant of 2(α + 1) in front of M in the
generalized potential function, the analysis for 0 and 1-sided gaps in Section 3.7.2 carries
through.

Putting it all together, we get the following result.

Theorem 42 (Randomized splitting). If partitioning by median in the query algorithm is
replaced with splitting on random pivots, lazy search trees satisfy the same time bounds,
in worst-case time, as in Theorem 13, except that RankBasedQuery(r) and Split(r) now
take O(logn + x log c) expected amortized time.

Note that another possible approach is to change Invariant (C) to something like c(Ii,j)+
2o(Ii,j) ≥ ∣Ii,j ∣, which gives further flexibility in the rest of the analysis. This is, however,
not necessary to prove Theorem 42.

3.11 Lazy Splay Trees
Splay trees [217] are arguably the most suitable choice of a biased search tree in practice;
we thereby explore their use within lazy search trees in this section. We show that an
amortized-runtime version of Lemma 22 can indeed be obtained using splay trees. We also
show that by using a splay tree, the efficient access theorems of the splay tree are achieved
automatically by the lazy search tree. This generalizes to any biased search tree that is
used as the data structure of Lemma 22.
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3.11.1 Splay Trees For The Gap Data Structure

We show that splay trees can be used as the gap data structure.

Lemma 43 (Splay for Gaps). Using splay trees as the data structure for the set of gaps
{∆i} allows support of all operations listed in Lemma 22, where the time bounds are
satisfied as amortized runtimes over the whole sequence of operations.

Proof. We use a splay tree [217] and weigh gap ∆i with wi = ∣∆i∣. The sum of weights,
W , is thus equal to n. Operation 1 can be supported by searching with e = (k, v) into the
tree until gap ∆i is found and then splayed. According to the Access Lemma [217], this
is supported in O(log(n/∣∆i∣)) amortized time. Operation 2 requires a weight change on
gap ∆i. By first accessing gap ∆i, so that it is at the root, and then applying a weight
change, this operation can be completed in time proportional to the access. According to
the Access Lemma [217] and the Update Lemma [217], this will then take O(log(n/∣∆i∣))
amortized time. Note that for our use of operation 2, the element will already have just
been accessed, so the additional access is redundant. Operations 3 and 4 are supported in
O(logn) time by the Update Lemma [217]. Note that when the gap data structure is used
in a lazy search tree, it always starts empty and more gaps are added one by one when
answering queries. Hence any sequence of operations arising in our application will access
every element in the splay tree at least once.

Note that a bound of O(log q) amortized cost for all operations also holds by using
equal weights in the analysis above (recall that in splay trees, the node weights are solely
a means for analysis and do not change the data structure itself).

3.11.2 Efficient Access Theorems

We now specify a few implementation details to show how lazy search trees can perform
accesses as fast as the data structure of Lemma 22 (resp. Lemma 43).

If an element e is the result of a query for a second time, then during that second
access, e is the largest element in its gap. Instead of destroying that gap, we can assume
the identity of the gap e falls into after the query to be the same gap in which e previously
resided (depending on implementation, this may require a key change in the data structure
of Lemma 22, but the relative ordering of keys does not change). In this way, repeated
accesses to elements directly correspond to repeated accesses to nodes in the data structure
of Lemma 22. Further, implementation details should ensure that no restructuring occurs
in the interval data structure when an element previously accessed is accessed again. This
is implied by the algorithms in Section 3.6, but care must be taken in the case of duplicate
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elements. This will ensure accessing a previously-accessed element will take O(1) time in
the interval data structure.

With these modifications, the lazy search tree assumes the efficient access properties of
the data structure of Lemma 22. We can state this formally as follows.

Theorem 44 (Access Theorem). Given a sequence of element accesses, lazy search trees
perform the access sequence in time no more than an additive linear term from the data
structure of Lemma 22, disregarding the time to access each element for the first time.

Proof. Once every item has been accessed at least once, the data structures are the same,
save for an extra O(1) time per access in the interval data structure. The cost of the first
access may be larger in lazy search trees due to necessary restructuring.

While we would ideally like to say that lazy search trees perform within a constant
factor of splay trees on any operation sequence, this is not necessarily achieved with the
data structure as described here. Time to order elements on insertion is delayed until
queries, implying on most operation sequences, and certainly in the worst case, that lazy
search trees will perform within a constant factor of splay trees, often outperforming them
by more than a constant factor. However, if, say, elements 1,2, . . . , n are inserted in order
in a splay tree, then accessed in order n,n − 1, . . . ,1, splay trees perform the operation
sequence in O(n) time, whereas lazy search trees as currently described will perform the
operation sequence in O(n logn) time.

Theorem 44 shows using a splay tree for the gap data structure (Lemma 43) allows lazy
search trees to achieve its efficient-access theorems. Observing that the initial costs of first
access to elements total O(n logn), we achieve Corollary 45 below.

Corollary 45. Suppose a splay tree is used as the gap data structure. Then lazy search
trees achieve the efficient access theorems of the splay tree, including static optimality,
static finger, dynamic finger, working set, scanning theorem, and the dynamic optimality
conjecture [217, 62, 61, 81].

3.12 Conclusion and Open Problems
We have discussed a data structure that improves the insertion time of binary search trees,
when possible. Our data structure generalizes the theories of efficient priority queues and
binary search trees, providing powerful operations from both classes of data structures. As
either a binary search tree or a priority queue, lazy search trees are competitive. From a
theoretical perspective, our work opens the door to a new theory of insert-efficient order-
based data structures.
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This theory is not complete. Our runtime can be as much as an additive O(n log logn)
term from optimality in the model we study, providingO(log logn) time insert and decrease-
key operations as a priority queue when O(1) has been shown to be possible [99]. Further
room for improvement is seen in our model itself, where delaying insertion work further
can yield improved runtimes on some operation sequences. We see several enticing research
directions around improving these shortcomings and extending our work. We list them as
follows:

1. Extend our model and provide a data structure so that the order of operations per-
formed is significant. A stronger model would ensure that the number of comparisons
performed on an inserted element depends only on the queries performed after that
element is inserted.

2. Within the model we study, improve the additive O(n log logn) term in our analysis
to worst-case O(n), or give a lower bound that shows this is not possible while
supporting all the operations we consider.

3. Explore and evaluate competitive implementations of lazy search trees. In the priority
queue setting, evaluations should be completed against practically efficient priority
queues such as binary heaps [236], Fibonacci heaps [99], and pairing heaps [101]. On
binary search tree workloads with infrequent or non-uniformly distributed queries,
evaluations should be completed against red-black trees [22], AVL trees [5], and splay
trees [217].

4. Support efficient general merging of unordered data. Specifically, it may be possible
to support O(1) or O(logn) time merge of two lazy search trees when both are used
as either min or max heaps.

5. Although the complexity of a rank-based query must be Ω(n) when the query falls in
a gap of size ∣∆i∣ = Ω(n), the per-operation complexity of RankBasedQuery(r) could
potentially be improved to O(x log c + logn) worst-case time instead of amortized
time, with x and c defined as in Theorem 13.

6. Develop an external memory version of lazy search trees for the application of re-
placing B-trees [22], Bε trees [43], or log-structured merge trees [193] in a database
system.

7. Investigate multidimensional geometric data structures based off lazy search trees.
Range trees [28], segment trees [26], interval trees [78, 176], kd-trees [25], and priority
search trees [177] are all based on binary search trees. By building them off lazy search
trees, more efficient runtimes as well as space complexity may be possible.
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Regarding point 3, we have implemented a proof-of-concept version of a lazy search tree
in C++, taking no effort to optimize the data structure. Our implementation is roughly
400 lines of code not including the gap data structure, to which we use a splay tree [217].
Intervals are split via randomized pivoting, as described in Section 3.10. The optimization
to support O(1) time average case insertion into the interval data structure is implemented,
and the data structure also satisfies the O(min(q, n)) pointer bound by representing data
within intervals in a linked list of C++ vectors.

Our implementation has high constant factors for both insertion and query operations.
For insertion, this is likely due to several levels of indirection, going from a gap, to an
interval, to a linked list node, to a dynamically-sized vector. For query, this is likely
due to poor memory management. Instead of utilizing swaps, as in competitive quicksort
routines, our implementation currently emplaces into the back of C++ vectors, a much
slower operation. The current method of merging also suggests some query work may be
repeated, which although we have shown does not affect theoretical analysis, may have an
effect in practice.

Still, initial experiments are promising. Our implementation outperforms both the
splay tree which our implementation uses internally as well as C++ set, for both low query
load scenarios and clustered queries. To give a couple data points, on our hardware, with
n = 1 000 000, our implementation shaves about 30% off the runtime of the splay tree when
no queries are performed and remains faster for anything less than about 2 500 uniformly
distributed queries. When n = 10 000 000, our implementation shaves about 60% off the
runtime of the splay tree when no queries are performed and remains faster for anything
less than about 20 000 uniformly distributed queries. The C++ set has runtime about 30%
less than our splay tree on uniformly distributed query scenarios. Our experiments against
C++ STL priority_queue show that our current implementation is not competitive.

Finally, regarding points 2 and 4, we have succeeded in devising a solution that removes
the O(log logn) factors of the approach discussed herein; the new solution also supports
constant time priority queue merge.
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Part II

Range Mode
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Chapter 4

Improved Time/Space Bounds for
Dynamic Range Mode

4.1 Introduction
The mode of a sample is a fundamental data statistic along with median and mean. Given
an ordered sequence, the range mode of interval [l, r] is the mode of the subsequence
from index l to r. Building a data structure to efficiently compute range modes allows
data analysis to be conducted over any window of one-dimensional data. Such queries are
common and important in database systems.

The range least frequent problem can be seen as a low-frequency variant of range mode.
Instead of searching for the most frequent element in an interval of the sequence, we query
for an element that occurs the fewest number of times. We may either restrict our attention
to elements that occur at least once in the query range or allow the answer to be an element
that does not occur in the interval but is present elsewhere in the sequence.

A third range frequency query we consider in this chapter is the problem of identifying
an element with given frequency k in the specified query interval. This problem has been
called the range k-frequency problem.

Both range mode query and range least frequent query have theoretical connections
to matrix multiplication. In particular, the ability to answer n range mode queries on an
array of size O(n) in faster than O(nω/2) time, where ω is the constant in the exponent
of the running time of matrix multiplication, would imply a faster algorithm for boolean
matrix multiplication [55, 56]. Upon closer examination, this lower bound also applies to
the range k-frequency problem.

The range mode, range least frequent, and range k-frequency problems are part of a set
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of questions one can ask on a subrange of a sequence. Other queries in this area include:

• Sum: Return the sum of elements in the query range.

• Min/ Max: Return the minimum/ maximum in the query range.

• Median: Determine the median element in the query range.

• Majority: Return the element that occurs more than 1/2 the time, if such an element
exists.

Note that the mean of a range can be reduced to the range sum problem. Table 4.1
gives an overview of known upper bounds on related static and dynamic range query data
structures.

Query Type Query Time Update Time Space Citation

Sum O(1) - O(n) trivial
O(lgn) O(lgn) O(n) [200]

Min/ Max O(1) - O(n) [102]
O(lgn/ lg lgn) O(lg1/2+ε n) O(n) [57]

Median O(lgn/ lg lgn) - O(n) [44]
O((lgn/ lg lgn)2) O((lgn/ lg lgn)2) O(n) [131]

Majority O(1) - O(n) [83]
O(lgn/ lg lgn) O(lgn) O(n) [83, 104]

Mode

O(nε lg lgn) - O(n2−2ε) [167]
O(1) - O(n2 lg lgn/ lgn) [167]

O(
√
n/ lgn) - O(n) [55]

O(n3/4 lgn/ lg lgn) O(n3/4 lg lgn) O(n) [55]
O(n2/3 lgn/ lg lgn) O(n2/3 lgn/ lg lgn) O(n4/3) [55]

O(n2/3) O(n2/3) O(n) new

Least Frequent O(√n) - O(n) [56]
O(n2/3 lgn lg lgn) O(n2/3) O(n) new

k-Frequency O(n2/3) O(n2/3 lgn) O(n) new

Table 4.1: Known static and dynamic range query upper bounds. Solutions are determin-
istic or Las Vegas randomized.
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4.1.1 Our Results

We improve the results of Chan et al. [55] by giving a dynamic range mode data structure
that takes O(n) space and supports updates and queries in O(n2/3) time. This improves
the query/ update time of their linear space data structure by a polynomial factor and
additionally improves the query/ update time of their O(n4/3) space data structure by an
O(logn/ log logn) factor. We also include in our update procedures the ability to insert or
delete elements in the middle of the array, an operation not addressed in previous dynamic
range mode data structures.

Our improvements are based on the observation that knowing how many of a type
of element occur in an interval can be as valuable as knowing the elements themselves.
Specifically, instead of storing the frequency counts of elements per span, we store the
number of elements with a particular frequency count per span. This information can
be dynamically maintained, and uses O(logn) bits per frequency per span, rather than
O(logn) bits per unique element per span.

Our technique is general enough to also apply to the range least frequent problem in a
dynamic setting. To our knowledge, this is the first data structure to do so. In the version
of the problem where we allow an answer to not occur in the specified query interval, our
data structure supports queries in O(n2/3 logn log logn) time, updates in O(n2/3) time, and
occupies O(n) space. In the version where the least frequent element must be present in the
query interval, we develop a Monte Carlo data structure that supports queries in O(n2/3)
time, updates in O(n2/3 logn) time, and occupies O(n log2 n) space. This data structure is
correct with high probability for any polynomial sequence of updates and queries, with the
restriction that updates are made independently of the results of previous queries. Notably,
if the set of queries and updates is fixed in advance or given to the algorithm all at once,
this property holds.

Furthermore, our Monte Carlo data structure is powerful enough to apply to the dy-
namic range k-frequency problem, also supporting queries in O(n2/3) time, updates in
O(n2/3 logn) time, and occupying O(n log2 n) space. This data structure can be aug-
mented to count the number of elements below, above, or at a given frequency, supporting
both queries and updates in O(n2/3) time and using O(n) space, without the need for an
independence assumption.

We organize our results as follows. In Section 4.2, we review previous work on static
and dynamic range mode and least frequent element queries. In Section 4.3, we briefly
give some notation that will be used for the rest of the chapter. In Section 4.4, we give the
basic setup of the O(n) space data structure. Section 4.5 describes how to answer a range
mode query in O(n2/3) time. Section 4.6 explains how to support updates to our base data
structures in O(n2/3) time. In Section 4.7, we discuss how to answer range least frequent
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queries in Õ(n2/3) time. Section 4.8 describes how to find an element of a given frequency
in a specified range in O(n2/3) time. Here we also mention additional frequency operations
our data structure can support. In Section 4.9, we describe how the data structures can
be made to support insertion and deletion of elements, also in O(n2/3) time. Finally, in
Section 4.10 we describe a modified dynamic array data structure used in our results, and
in Section 4.11 we describe a polylogarithmic space Monte Carlo data structured used in
our results.

4.2 Previous Work

4.2.1 Static Range Mode Query

The static range mode query problem was first studied by Krizanc et al. [167]. Their
focus is primarily on subquadratic solutions with fast queries, achieving O(n2−2ε) space
and O(nε logn) query time, with 0 < ε ≤ 1/2, and O(n2 log logn/ logn) space and O(1)
query time. If we set ε = 1/2 with the first approach, this gives a linear space static range
mode data structure with query time O(√n logn). By substituting an O(log logn) data
structure for predecessor search, such as van Emde Boas trees [230], the query time can
immediately be improved to O(√n log logn).

Chan et al. [55] focus on linear space solutions to static range mode. They achieve a
clever array-based solution with O(n) space and O(√n) query time. By using bit-packing
tricks and more advanced data structures, they reduce the query time to O(

√
n/ logn).

As with many range query data structures, the range mode problem has also been
studied in an approximate setting [123, 37].

4.2.2 Static Range Least Frequent Query

The range least frequent problem was first studied by Chan et al. [56]. They again focus
on linear-space solutions, this time achieving O(n) space and O(√n) time query. In their
paper, they focus on the version of range least frequent element where the element must
occur in the query range.

4.2.3 Dynamic Range Mode

Chan et al. [55] also study the dynamic range mode problem. They give a solution tradeoff
that at linear space, achieves O(n3/4 logn/ log logn) worst-case time range mode query and
O(n3/4 log logn) amortized expected time update. At minimal update/ query time, this
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tradeoff gives O(n4/3) space and O(n2/3 logn/ log logn) worst-case time range mode query
and amortized expected time update.

4.2.4 Lower Bounds

Both [55] and [56] give conditional lower bounds for range mode and range least frequent
problems, respectively. Chan et al. [55] reduces multiplication of two

√
n ×√

n boolean
matrices to n range mode queries in an array of size O(n). This indicates that with current
knowledge, preprocessing an O(n)-sized range mode query data structure and answering
n range mode queries cannot be done in better than O(nω/2) time, where ω is the constant
in the exponent of the running time of matrix multiplication. With ω = 2.3727 [237],
this implies with current knowledge that a range mode data structure must either have
preprocessing time at least Ω(n1.18635) or query time at least Ω(n0.181635). Since we may
choose to update an array rather than initializing it, this lower bound also indicates that
a dynamic range mode data structure must have update/ query time at least Ω(nω/2−1).

In [55], Chan et al. also give another conditional lower bound for dynamic range mode.
They reduce the multiphase problem of Pǎtraşcu [206] to dynamic range mode. A reduction
from 3-SUM (given n integers, find three that sum to zero) is given by Pǎtraşcu [206] to the
multiphase problem. Based on the conjecture that the 3-SUM problem cannot be solved in
O(n2−ε) time for any positive constant ε, this chain of reductions implies a dynamic range
mode data structure must have polynomial time query or update.

The reduction of
√
n ×√

n boolean matrix multiplication to n O(n)-sized range mode
queries can be adopted to achieve the same conditional lower bound for the range least
frequent problem [56]. Upon examination, the conditional lower bound also applies to
k-frequency queries.

An unconditional lower bound also exists in the cell probe model for the range mode and
k-frequency problem. Any range mode/ k-frequency data structure that uses S memory
cells of w-bit words needs Ω( logn

log(Sw/n)) time to answer a query [123].

4.3 Preliminaries
Before we discuss the technical details of our results, it will be helpful to develop some
notation.

As in [55, 56], we will denote the subarray of A from index i to index j as A[i ∶ j] and
use array notation A[i] to denote the element of A at index i. We will assume zero-based
indexing throughout this chapter.
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Furthermore, for range frequency data structures, the actual type that array A stores
is irrelevant; we only care about how many times each element occurs. It will be useful to
think of the identity of an element as a color. Therefore, we may say the color c occurs
with frequency f in range A[l ∶ r]. This is to distinguish that we are not referring to a
particular index but rather the identity of multiple indices in the range.

For simplicity, we will assume the number of elements n is a perfect cube; however, the
results discussed easily generalize for arbitrary n. All log’s in this chapter are assumed to
be base 2.

In Section 4.9 we will discuss operations that insert and delete elements into and from
array A. This effectively changes the indexing of elements after the point of operation.
It will be helpful to develop an indexing scheme that does not change with the effect
of insertion or deletion. To differentiate between the interface of the operations and the
internals used by the data structure, we will denote with every position of A two values:
the rank and index of the corresponding position. This distinction only becomes important
when elements are inserted into positions of A, and thus are only relevant to Section 4.9.

As will be explained in Section 4.9, to accommodate insertion and deletion in O(n2/3)
time, empty space must be made in a series of arrays that ultimately represent A. We will
refer to the elements that reside in the extra space of each section as “empty” elements.
We associate two properties with each position in A: the index, which we refer to as the
absolute position when all array sections are arranged in order, including the “empty”
elements; and the rank, which, when the position is occupied by a color, denotes the
number of non-empty elements that precede the position in the total order.

By A[i] we refer to the ith index of A, not rank; and similarly, we let A[i ∶ j] denote
the subrange of A from index i to index j. The interface of all our operations to the user
function on rank, but the internals of all our data structures function on index. As will be
seen in Section 4.9, we split A into sections of O(n1/3) elements. This allows conversion
from rank to index and back in O(n1/3) time, so the distinction is not important for the
complexity of our operations.

In all our proofs, we analyze space cost in words, that is, O(logn) collections of bits.

4.4 Data Structure Setup
The idea of our data structure will be to break array A into O(n1/3) evenly-spaced end-
points, so that there are O(n2/3) elements between each endpoint. We will use capital
letters L and R when referring to particular endpoints. We will also occasionally refer to
the elements between two consecutive endpoints as a segment ; therefore, there are O(n1/3)
segments in A.

89



Each color that occurs in A will be split into the following two disjoint categories:

• Frequent Colors: Any color that appears more than n1/3 times in A.

• Infrequent Colors: Any color that appears at most n1/3 times in A.

Note that there can be at most n/n1/3 = n2/3 frequent colors in A at any point in time.
Our data structure will need to use dynamic arrays as auxiliary data structures. These

dynamic arrays will be a modification of the simple two-level version of the data struc-
ture described by Goodrich and Koss [117]. We have the following lemma regarding the
performance of these dynamic arrays:

Lemma 46. There is a dynamic array data structure D that occupies O(n) space and
supports:

1. D[i]: Retrieve/ Set the element at rank i, in O(1) time.

2. Insert(i, x): Insert the element x at rank i, in O(√n) time.

3. Delete(i, x): Delete the element x at rank i, in O(√n) time.

4. Rank(ptr): Determine the rank of the element pointed to by ptr, in O(1) time.

We leave the proof of Lemma 46 and discussion of the dynamic array data structure
to Section 4.10. If desired, the data structure can be replaced by a balanced binary search
tree, at the cost of additional logarithmic factors in the query times of our data structure.

We can now describe the base set of auxiliary data structures used throughout the
chapter:

1. Arrays BL,R, for all pairs of endpoints L,R, indexed from 0 to n1/3, so that

BL,R[i] ∶= The number of infrequent colors with frequency i in A[L ∶ R].

2. Dynamic arrays Dc, for every color c, so that

Dc[i] ∶= The index in A of the ith occurrence of color c.

3. An array E parallel to A so that

E[i] ∶= A pointer to the location in memory of index i in dynamic array DA[i].
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4. A binary search tree F of endpoints. At each endpoint R, we store

F [R] ∶= A binary search tree on frequent colors, giving their frequency in A[0 ∶ R].

In regards to BL,R, we will sometimes refer to the set of elements between endpoints L
and R as the span of L and R.

We now analyze the space complexity and construction time.

Lemma 47. The base data structures take O(n) space.

Proof. The arrays BL,R have size O(n1/3) and there are O(n2/3) of them, so in total these
take O(n) space. Every index of A is present in exactly one of the Dc arrays, and each
dynamic array takes linear space. Therefore, in total all Dc arrays take O(n) space. Array
E has exactly the same size as A and thus takes O(n) space. The binary search trees in
each node of F have size equal to the number of frequent colors, which is at most n2/3.
Since there are O(n1/3) endpoints and thus nodes of F , this structure takes O(n) space.

Lemma 48. The base data structures can be initialized in O(n4/3) time.

Proof. We can count the number of occurrences of each color in O(n logn) time and deter-
mine for each color whether it is frequent or infrequent. Let A′ be the array A without any
frequent colors. We can scan A′ n1/3 times, starting from each endpoint, to build the arrays
BL,R. This will be done as follows. For each scan, we maintain an array T so that T [c]
denotes the number of occurrences of color c found so far. We also maintain the array BL,∗
which is the array B with endpoint L and a variable right endpoint, that is maintained as
elements are scanned. When A[i] = c, we check the number of occurrences of c to update
BL,∗ to the correct state. In total, each element scanned results in O(1) operations, until
we reach a right endpoint. When we reach a right endpoint, we write BL,∗ to array BL,R,
where R denotes the right endpoint just encountered. In this way, for all endpoints L,R,
we spend O(n1/3) time to create the array. Thus the element scan dominates the time
complexity, requiring O(n4/3) time to create all BL,R arrays.

The dynamic arrays Dc can be built in linear time overall by walking through A and
appending indices to the ends of Dc arrays. At this same time E can be built. The BSTs
for all endpoints in F can also be built in linear time overall, since there are at most n2/3

frequent colors per list, there are n1/3 lists in total, and counting each frequent element in
each interval can be done at the same time in one scan through A.

Throughout the next few sections, we will use the following Lemma, as in [55]:
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Lemma 49. Let A[i] = c. Then, given frequency f and right endpoint j, our base data
structures may answer the following questions in constant time:

Does color c occur at least f times in A[i ∶ j]? (4.1)
Does color c occur at most f times in A[i ∶ j]? (4.2)
Does color c occur exactly f times in A[i ∶ j]? (4.3)

Proof. We call rank(E[i]) on Dc to get the rank r of i in Dc. Since array Dc stores the
indices of every occurrence of color c in A, the values of Dc[r+f] and Dc[r+f−1] determine
the answers to the above questions.

A similar strategy can be used to answer the above questions given an index j and left
endpoint i.

4.5 Range Mode Query
The range mode query will make use of the following lemma, originating from [167] and
also used by [55]:

Lemma 50 (Krizanc et al. [167]). Let A1 and A2 be any multisets. If c is a mode of
A1 ∪A2 and c ∉ A1, then c is a mode of A2.

The query algorithm is described in Algorithm 2.

Theorem 51. Algorithm 2 finds the current range mode of A[l ∶ r] in O(n2/3) time.

Proof. Endpoints L and R can be found from [l, r] by appropriate floors and ceilings in
constant time.

In step 1, we can iterate through F [R] and F [L] in O(n2/3) time, determining frequency
counts for all frequent elements.

In step 2, answering question (4.1) takes O(1) time per element via Lemma 49. Note
that we use left endpoint l for elements in range A[R + 1 ∶ r] and right endpoint r for
elements in range A[l ∶ L − 1]. Although we do not check (4.1) for the full range [l, r],
we will check the first/ last occurrence of any color in A[l ∶ L − 1] ∪A[R + 1 ∶ r], thereby
effectively checking for all of [l, r]. When (4.1) is answered in the affirmative at index i,
we linearly scan Dc, starting at Dc[i + f + 1] (Dc[i − f − 1] if i ∈ [R + 1 ∶ r]) to determine
a new highest frequency. Let us determine the cost of these linear scans. Let c be the
most frequent color found from steps 1 and 2. If c is an infrequent color, it cannot occur
more than n1/3 times, so the total cost of the linear scans is no more than O(n1/3). If it
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Algorithm 2 Range Mode Query in A[l ∶ r]

Let L and R be the first and last endpoints in [l, r], respectively.

1. Check the frequency of every frequent color in A[L ∶ R] via BSTs F [R] and F [L].
Let f be the highest frequency found so far.

2. Ask question (4.1) for all colors in A[l ∶ L − 1] ∪A[R + 1 ∶ r] with frequency f and
right endpoint r/ left endpoint l. If (4.1) is answered in the affirmative for color c,
linearly scan Dc to count the number of occurrences of color c in [l, r], update f ,
and continue.

3. Find the largest nonzero index of BL,R. If this is larger than f , update f and do the
following:

(a) Find the next endpoint R′ to the left of R.

(b) Check BL,R′[f]. If BL,R′[f] < BL,R[f], search A[R′ + 1 ∶ R] for a color that
occurs f times in A[L ∶ R], via question (4.3) with left endpoint L.

(c) Otherwise, repeat from step (a) with R ← R′.

4. Return f and the corresponding color found from either step 1, 2, or 3(b).

is a frequent color, its frequency cannot have increased by more than O(n2/3), since its
frequency was checked in step 1 and only O(n2/3) elements exist in A[l ∶ L−1]∪A[R+1 ∶ r].
Thus the total cost of the linear scans is no more than O(n2/3). In either case, step 2 takes
O(n2/3) time.

For step 3, finding the largest nonzero index of BL,R takes O(n1/3) time. If this is larger
than the frequencies found in steps 1 or 2, we execute steps 3(a) - 3(c). We can only repeat
the steps at most O(n1/3) times. The condition BL,R′[f] < BL,R[f] will happen for one of
these iterations, since eventually R′ = L in which case there are no elements accounted for
in the interval. When BL,R′[f] < BL,R[f], this implies a color with frequency f in range
[L,R] appears somewhere in A[R′+1 ∶ R]. There are only O(n2/3) elements in A[R′+1 ∶ R].
Checking if color c occurs exactly f times in A[L ∶ R] can be done by asking question (4.3).

For the correctness of the value returned in step 4, note that the mode of A[l ∶ r] is
either an element in A[l ∶ L − 1] ∪ A[R + 1 ∶ r] or the mode of A[L ∶ R], by Lemma 50.
The frequency of all colors in A[l ∶ L − 1] ∪A[R + 1 ∶ r] is checked. Further, the frequency
of infrequent and frequent colors for interval A[L ∶ R] is also checked in steps 1 and 3,
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respectively. Therefore the color and frequency returned in step 4 must be the mode of
A[l ∶ r]. Putting it together, we see Algorithm 2 is correct and takes O(n2/3) time.

4.6 Update Operation
The update operation will require us to keep the base data structures up to date. Given
update A[i] ← c, there are two similar procedures that must occur: adjusting the data
structures for the removal of current color A[i] and adjusting the data structures for the
addition of color c at index i.

The following algorithm can be used for both procedures. We note that if either the
color removed is the last occurrence of its type or the color added is a new color, the list
Dc will have to also be constructed/ deleted and BL,R should be modified to only reflect
colors present in A. For simplicity we omit these details from Algorithm 3.

Algorithm 3 Update Base Data Structures for Addition/ Removal of Color c at Index i.

1. If color c is infrequent prior to this operation, count how many times c occurs in
each span via Dc, decrementing the corresponding index of each B array.

2. Adjust Dc by adding/ removing i. If this is an add operation, set E[i] to the
memory location of i in Dc.

3. If color c remains or becomes infrequent after step 2, again count how many times c
occurs in each span via Dc, incrementing the corresponding index of each B array.

4. If color c became infrequent in step 2, delete its entry in all nodes of F . If color c
became frequent after step 2, add its frequencies to F . If color c remained frequent
after step 2, increment the frequencies of all prefixes including index i in F .

Theorem 52. Algorithm 3 updates the base data structures for addition/ removal of color
c at index i in O(n2/3) time.

Proof. If c is an infrequent color prior to the update, step 1 removes its contribution to
all B arrays. Counting the frequency of color c in each interval can be done via O(n1/3)
searches through Dc, each taking O(n1/3) time. We first start at the beginning, finding its
frequency for all right endpoints with left endpoint fixed, then move the left endpoint to
the next endpoint and repeat, etc. Step 1 in total takes O(n2/3) time.
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Adding or removing i from Dc takes O(√n) time, as given in Lemma 46. Adjusting
E[i] can be done during this operation, so in total step 2 takes O(√n) time. The analysis
of step 3 is identical to step 1. In step 4, adding, deleting, or modifying the entry of color c
in all/ some nodes of F takes O(n1/3 logn) time, since each node stores the list of frequent
colors and their frequency counts in a BST. If color c just became frequent, it only occurs
O(n1/3) times in A, and thus counting its frequency from the beginning to each endpoint
can be done in O(n1/3) time. In total, step 4 takes at most O(n1/3 logn) time.

After the completion of Algorithm 3, B arrays, dynamic array Dc, array E, and binary
search tree F has been updated to reflect the current state of array A. Since all steps
execute in no more than O(n2/3) time, Algorithm 3 is correct and runs in O(n2/3) time.

4.7 Range Least Frequent Query, Allowing Zero
To answer range least frequent queries, we require the use of one more auxiliary data
structure: an array CL,R for all pairs of endpoints L,R, indexed from 1 to n1/3. At index
CL,R[i] we store a list of all colors that occur i times in A such that the smallest span
enclosing all occurrences is [L,R].

Since each infrequent color is represented exactly once in the CL,R lists and there are
O(n2/3 ⋅ n1/3) = O(n) total indices present, this data structure takes linear space. It can
also be initialized in linear time, and we can modify the update procedure of Algorithm 3
to update CL,R at the same time as BL,R for no additional time cost.

It is additionally worth noting that since the Range Least Frequent Query will require
Õ(n2/3) time, the use of dynamic arrays for data structures Dc is not necessary for this
section. Instead, we can use binary search trees, augmented to support lookup by index
in O(logn) time, or Dietz’ data structure [71]. For the best time complexity, we will
use augmented binary search trees to count occurrences of colors in a specific range and
an augmented dynamic linear-space van Emde Boas tree [178] to count occurrences of
colors between endpoints. The van Emde Boas tree stores a single node for any endpoint
R that a color appears in, which keeps the number of occurrences of that color from the
beginning to endpoint R. The van Emde Boas tree can be updated in O(n1/3 log logn) time
upon insertion or removal and via predecessor/ successor queries, can support counting the
number of occurrences of any color between any two endpoints in O(log logn) time.

The Range Least Frequent Query procedure is described in Algorithm 4.

Theorem 53. Algorithm 4 finds the least frequent element of A[l ∶ r], allowing zero, in
O(n2/3 logn log logn) time.

Proof. We can find a list of frequent colors in any node of the F BST. Using an augmented
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Algorithm 4 Range Least Frequent Query in A[l ∶ r], Allowing Zero

Let L and R be the first and last endpoints in [l, r], respectively.

1. Check the frequency of every frequent color in A[l ∶ r] via Dc. Let f be the lowest
frequency found so far.

2. Find the set of all infrequent colors that occur in A[l ∶ L− 1]∪A[R + 1 ∶ r]; call it U .
Count the frequencies of all colors of U in range A[l ∶ r] and update f with the
lowest frequency found so far.

3. Compute B′
L,R, the array BL,R updated to erase the contribution of all colors in U .

4. If the smallest positive-valued index of B′
L,R is less than f , update f and check if

any list CL′,R′[f], [L′,R′] ⊆ [L,R], is non-empty. If so, return a color from the
appropriate list. Otherwise, binary search from R to the last endpoint of A in the
following way:

(a) Let R′ be a value in the middle of the search range. If B′
L,R′[f] < B′

L,R[f], let
R′ be the new upper bound; otherwise, continue the search in the half of the
range after R′.

(b) When the search range is two consecutive endpoints, we search the range for a
color that occurs f times in A[L ∶ R] and return its identity.

(c) If the condition in a. is never satisfied, we must repeat a binary search on the
other side, with an initial search range of the beginning of A to L.

binary search tree for Dc, step 1 can then be done in O(n2/3 logn) time. In step 2, since
there are O(n2/3) elements in A[l ∶ L−1]∪A[R+1 ∶ r], we can find color set U and complete
step 2 similarly to step 1 in O(n2/3 logn) time. Step 3 requires counting the frequency of
each color of U in range A[L ∶ R] and decrementing the corresponding index to make B′

L,R;
thus it can also be done in O(n2/3 log logn) time using the augmented van Emde Boas
tree [178].

In step 4 we are looking for a least frequent element of A[L ∶ R] that does not occur in
A[l ∶ L − 1] ∪A[R + 1 ∶ r]. All colors of A[l ∶ L − 1] ∪A[R + 1 ∶ r] are represented in set U ,
found in step 3. We effectively erase the contribution of colors of U via computing B′

L,R;
therefore, we can proceed as if colors of U do not exist in A. We will refer to A′ as array
A without any colors of U .
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If the least frequent color in A′[L ∶ R] does not exist elsewhere in A, then its identity will
be stored in a list CL′,R′[f], [L′,R′] ⊆ [L,R]. Note colors of U need not be special-cased
for this lookup, since by appearing in A[l ∶ L − 1] ∪A[R + 1 ∶ r], they will not be present
in any of the searched lists. Otherwise, we know the least frequent color in A′[L ∶ R] must
occur somewhere else in A′.

Now, amongst all colors in A′, we know frequency f is minimal in range A′[L ∶ R].
Therefore if we increase the range to A′[L ∶ R′], the frequency of colors can only increase.
For this property to hold, we must allow f = 0.

In each iteration, the smallest positive-valued index of B′
L,R′ will be f or greater and

B′
L,R′[f] will be no more than B′

L,R[f]. If it is less, we know one of the colors that occurred
f times in A′[L ∶ R] now occurs more than f times in A′[L ∶ R′]. Therefore we may find it
in the half of the search range before R′. If it is the same, we know none of the colors that
occurred f times in A′[L ∶ R] appear in the half of the search range before R′. Either way
we decrease the search range by a factor of 2. When the range represents two consecutive
endpoints, we can search it for a color that occurs f times in A[l ∶ r] in O(n2/3 logn) time.

However, if R′ is the end of the array and B′
L,R′[f] = B′

L,R[f], then none of the colors
that appear f times in A′[L ∶ R] appear to the right of R in A′. In this case, we can repeat
the same binary search on the other side, decreasing a left endpoint L′ and checking the
same condition. Since the least frequent color in A′[L ∶ R] must occur elsewhere in A, as
it was not present in any of the lists CL′,R′[f], the search on this side must identify a color
that appears f times in A′[L ∶ R].

The time complexity of step 4 can be analyzed as follows. Checking the lists CL′,R′ takes
O(n2/3) time, since there can be O(n2/3) endpoints [L′,R′] ⊆ [L,R]. The binary search
is on endpoints, of which there are O(n1/3). Thus, there are O(log(n1/3)) = O(logn)
iterations of the binary search, and in each iteration we must compute B′

L,R′ or B
′
L′,R. This

computation takes O(n2/3 log logn) time as in step 3. Therefore the binary search process
takes O(n2/3 logn log logn) time. In total, step 4 takes O(n2/3 logn log logn) time.

For correctness, the least frequent element in A[l ∶ r] is either a frequent or infrequent
color. If it is a frequent color, it is identified in step 1. If it is an infrequent color, we
have two cases. Either the color occurs in A[l ∶ L − 1] ∪ A[R + 1 ∶ r], and thus set U ,
or it does not occur in set U . Step 2 accounts for all infrequent colors in set U . Steps
3 and 4 account for the last case. By the above, these steps find an infrequent color in
A[L ∶ R] that does not occur in A[l ∶ L − 1] ∪ A[R + 1 ∶ r] in O(n2/3 logn log logn) time.
Thus, Algorithm 4 is correct and finds the least frequent element of A[l ∶ r], allowing zero,
in O(n2/3 logn log logn) time.
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4.8 Range k-Frequency Query
The previous two sections make use of a monotonicity property to find a color of given
frequency in a range: for range mode, we know the frequency of the most frequent element
can only decrease if the query range is decreased; furthermore, for range least frequent,
we know the frequency of the least frequent element can only increase if the query range
is increased. For this monotonicity condition to hold for least frequent elements, we must
allow answering with an element of frequency zero. To force our answer to be an element
that occurs in the query range, we must use an additional data structure that allows
retrieval of colors by frequency in the BL,R arrays. To achieve Õ(n) space, we cannot
afford to store a list of colors at each index BL,R[i], and storing a single color at each index
will run into issues during updates. Instead, we will use the following data structure which
is similar to randomized data structures in the dynamic streaming literature [96]:

Lemma 54. There is a Monte Carlo data structure that occupies expected O(log2 n) space
and supports:

1. Insert(x): Insert element x into the collection, in O(logn) expected time.

2. Delete(x): Delete element x from the collection, in O(logn) expected time.

3. Retrieve(): Return an element in the collection, in O(1) expected time.

The data structure requires the Delete(x) operation is executed independently of the
results of Retrieve().

We leave the proof of Lemma 54 and discussion of the Monte Carlo data structure to
Section 4.11. With it, we can answer the general problem of finding an element of given
frequency in a query range. The additional auxilliary data structures needed will be as
follows:

1. An array GL,R parallel to BL,R. At index GL,R[i], we store the number of infre-
quent colors with frequency i in A[L ∶ R], excluding colors that appear in segments
immediately left of L or right of R.

2. An array HL,R, parallel to GL,R, so that at index HL,R[i], we store a collection of
colors counted in GL,R[i] in the data structure of Lemma 54.

The array GL,R is similar to the item (ii) stored in table D of [56]. During preprocessing, G
arrays can be built similarly to B; however, when we fix left endpoint, we check all colors
that occur in the segment to the left. We avoid counting such colors. Similarly, before we
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finalize the count for GL,R, we move the right endpoint out as if to count the next range,
keeping track of colors encountered. We subtract the frequency of such colors in GL,R.
Whenever we add to/ subtract from GL,R, we can insert or delete the color from HL,R.

As explained above, our space cost now becomes Õ(n). Furthermore, our updates to G
and H can be done alongside the update to B; however, since each insertion takes O(logn)
time, the update procedure now takes O(n2/3 logn) time. With this we have:

Algorithm 5 Range k-Frequency Query in A[l ∶ r]

Let L and R be the first and last endpoints in [l, r], respectively.

1. For color c at index i in the segment left of L, check via Dc to see if i is the first
index of color c to appear in range [l, r], or, if outside [l, r], the next occurrence of
color c lies in range [l, r]. If so, ask question (4.3) for the occurrence of color c in
[l, r] with frequency k and right endpoint r. If answered in the affirmative, return
color c. Do the same, symmetrically, for colors in the segment right of R.

2. For each frequent color not addressed in step 1, check its frequency in A[L ∶ R] via
BSTs F [R] and F [L]. If any occur with frequency k, return the color.

3. If no color is found from step 1, check if GL,R[k] > 0. If so, return
HL,R[k].Retrieve(). If not, return that no color has frequency k in range A[l ∶ r].

Theorem 55. Algorithm 5 returns an element of frequency k in A[l ∶ r] or indicates
no such element exists, assuming update operations have been executed independently of
results of query operations, in O(n2/3) time.

Proof. In step 1, we look at two full segments of O(n2/3) total elements. For color c at
index i, if i ∈ [l, r], we must determine if index i is the first occurrence of color c in [l, r].
Let m = Dc.rank(E[i]). Index i is the first occurrence of color c in [l, r] if Dc[m − 1] is
outside [l, r]. Similarly, if i ∉ [l, r], we can again define m = Dc.rank(E[i]), then check if
Dc[m + 1] is in [l, r]. In any case, for any color that occurs in segments immediately left
of L or right of R, one of the indices will be the first outside [l, r] or the first within [l, r].
Thus the frequency of the color will be checked in A[l ∶ r]. Since we do a constant number
of constant time operations for O(n2/3) elements, step 1 takes O(n2/3) time.

As in Algorithm 2, step 2 takes O(n2/3) time. Step 3 takes O(1) time. In any case,
in step 1 we check all elements in segments immediately left of L or right of R to see if
they occur k times in A[l ∶ r]. Furthermore, in steps 2 and 3, we check every frequent and
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infrequent color that occurs in A[L ∶ R] but not in segments immediately left of L or right
of R, via array G. Thus we have checked every color if it occurs k times in A[l ∶ r]. Since
no step takes more than O(n2/3) time, this proves Theorem 55.

Algorithm 5 can be easily modified to return the least frequent element present in the
query range with the same time complexity and independence assumption. It can also be
modified to count the number of elements above, below, or at a given frequency, as well as
only determine the frequency of the least frequent element. Since these queries do not ask
for a color, arrays HL,R are not needed. This reduces the space cost to O(n), update cost
to O(n2/3), and requires no independence assumption.

4.9 Insert/ Delete Operations
To allow for efficient insertion and deletion into A, instead of storing array A directly, we
will split A into the O(n1/3) sections between endpoints and maintain each section as its
own array. When created, each section will be twice as large as necessary to provide space
for insertion of elements. As stated in Section 4.3, we will refer to the elements that reside
in the extra space of each section as “empty” elements.

Recall from Section 4.3 that we will associate two properties with each position in A:
the index, which we refer to as the absolute position when all array sections are arranged in
order, including the “empty” elements; and the rank, which, when the position is occupied
by a color, denotes the number of non-empty elements that precede the position in the
total order.

Then A[i] refers to the ith index of A, not rank; and similarly, A[i ∶ j] denotes the
subrange of A from index i to index j. As before, A[L ∶ R] denotes the subrange of A from
endpoint L to endpoint R. Though the interface of all our operations in the preceding
sections function on rank, the internals of all our data structures function on index. By
storing the number of non-empty elements in each array section of A, we may convert from
rank to index and back in O(n1/3) time, so this distinction does not affect the running
times of the previous sections.

Although the number of nonempty elements of A will change with each insert/ delete
operation, we will assume the variable n, when used to distinguish between frequent and
infrequent colors, is fixed, so that designations need not change during these operations.
When the number of nonempty elements of A changes to require rebuilds, we may assume n
changes during this rebuild. In this way, the value n and the number of nonempty elements
of A will not differ by more than a constant factor.

We will assume the version of the proposed data structure that performs updates in
O(n2/3) time. In Section 4.8, some of the data structures discussed require Õ(n2/3) time
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per update. In this case, the insert/ delete operations take the time complexity of the
update operation, that is, Õ(n2/3) time.

Lemma 56. If an insertion/ deletion does not require resizing of an array segment, we
may perform this operation in O(n2/3) time.

Proof. When we insert an element at rank i, we determine which array it falls in by checking
the sizes of each array in O(n1/3) time. We then find the appropriate index at which it
should reside in the corresponding array and push elements back in the array in O(n2/3)
time. This requires updating the corresponding entries in Dc for the elements pushed back.
The pointers stored in E allow these updates in O(1) time per element moved.

At this point, index i is an open space to which we may set A[i] = c. We then must
call Algorithm 3 to update the base data structures to the addition.

Deleting an element at rank i can be done similarly; pushing elements forward in the
corresponding array segment, updating Dc for each color c that is moved, and calling
Algorithm 3 to update the base data structures for the removal.

When an array segment has no more space for element insertions, or has less than a
quarter of its elements non-empty, we need to perform a more sophisticated operation to
preserve functionality and the O(n) space bound. The simple solution is to just rebuild the
whole data structure. Since we can do this in O(n4/3) time, by Lemma 48, and rebuilding
will only be required after O(n2/3) insertions/ updates, we can use this approach to get
amortized O(n4/3/n2/3) = O(n2/3) time per insertion and deletion.

It is possible to make this bound worst-case; however, the usual blackbox trick of
rebuilding as we approach the threshold for needing a new data structure does not work.
One reason for this is that we need to start rebuilding for each possible segment that can
over/ under flow. The rebuilt structure has size O(n), so maintaining this for each segment
would take O(n4/3) space. Instead, we can try to rebuild just what we need to either break
a segment into two segments, or to absorb the segment into a surrounding segment. When
the number of endpoints has doubled or halved, we can rebuild the entire data structure.
In this case, since we need only store a single new copy, the blackbox technique applies.

Theorem 57. We may perform insert and delete in O(n2/3) worst-case time.

Proof. Insertion/ deletion of elements without addressing resizing of a segment is handled
in Lemma 56. When a segment either reaches full capacity or 1/4 capacity, we need to either
merge the segment with a surrounding segment or split the segment into two segments. If
merging the segments would result in a segment that would be above full capacity, we can
instead move elements from the larger segment to the smaller segment. In any of the three
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scenarios, we need to achieve O(n4/3) worst-case time and O(n2/3) work space to be able
to apply blackbox dynamization techniques to make the overall bound worst-case.

Any process of physically moving elements from one segment to another can be done
similarly to as in Lemma 56. This takes O(n2/3) time per move and updates B arrays,
Dc, E, and F via Algorithm 3. Therefore, physically moving elements in any of the above
three scenarios will require O(n4/3) time and no more than O(n2/3) work space. We now
need consider the costs of adding and deleting endpoints.

When a segment is absorbed, the endpoint between the smaller segment and its neighbor
will need to be removed. Doing so takes O(logn) time to modify F , and no more than
O(n1/3) time to delete any B arrays that use this endpoint.

Similarly, when a segment is split, a new endpoint must be created. We can do this as
follows. We need to populate the B array for this new endpoint. There are only O(n1/3)
other end points and each B array has O(n1/3) values, so this takes O(n2/3) work space
for the structure we wish to keep. However, to create the new B array, we must count
each color in the corresponding ranges. If we count each color individually, via Dc, we can
count all colors in the corresponding ranges efficiently. Since each infrequent color occurs
at most n1/3 times, and there are at most n infrequent colors, this takes O(n4/3) time and
O(n2/3) work space.

Updating F requires adding a new endpoint and counting frequent elements from the
beginning of A to this endpoint. We can use the counts from the preceding endpoint and
add the occurrences of elements from the beginning of the segment to the position of the
new endpoint. This will then take O(n2/3) time and work space.

In Section 4.7, we describe a data structure that can ultimately be updated alongside
B, but this structure may take more than O(n2/3) space for some segments. This is okay
because when the space cost of each segment is totaled, the structure takes O(n) space
overall. The additional data structures in Section 4.8 can be updated alongside BL,R.

Thus it is possible to create the new data structures we need inO(n4/3) time andO(n2/3)
work space. To achieve worst-case insert/ delete operations, as we approach the threshold
for needing to resize a segment, we rebuild the necessary structures at a rate of O(n2/3)
operations per insert/ delete in the corresponding segment. These partially-constructed
data structures can be kept up to date alongside the base data structures when updates
occur. If a threshold is reached in a segment, we swap the necessary structures to the global
structure. One further point must also be addressed. If we create a new endpoint, then in
the next iteration perform an update that creates another new endpoint, the new B array
for these two endpoints will not have been created. To fix this, we can build B arrays to
prospective endpoints as well as current endpoints during the building process. As each
segment has only one prospective endpoint, this doesn’t impact costs asymptotically.

Eventually, when the number of endpoints doubles or halves, we need to rebuild the
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whole structure to maintain that we have O(n1/3) endpoints and O(n2/3) elements between
each endpoint. Since only one copy of the whole structure need be rebuilt, with the trick
of rebuilding/ updating at twice the rate, this can be done in O(n) extra space, and
O(n4/3/n2/3) = O(n2/3) extra time per operation.

4.10 Modified Dynamic Array Data Structure
For the purposes of this chapter, we will only need the two-level structure of [117]. It
should be possible to generalize the operations discussed for the two-level structure to the
multi-level structure, if desired.

Suppose we wish to represent a dynamic array on n elements. We define a parameter
nf = Θ(n); the value of nf changes as n becomes too large or too small. Moreover, we
define m to be ⌈√nf ⌉. We will maintain ⌈n/m⌉ circular queues Qi of exactly m elements
each, except possibly for the last queue. Every element in each queue has a place in a total
order represented by the queues. We say all elements of Qi precede elements of Qi+1, and
within a queue Qj, distance from the head of the queue determines the relative order of
the elements. Each circular queue Qi supports the following operations:

1. Insert element x at index j of Qi, then pop the last element off the queue and return
it.

2. Delete the element at index j of Qi, sliding elements after j forward in the queue.

3. Push element x onto the front/back of the queue, then pop the first/last element off
the queue and return it.

4. Return the element at index j of Qi.

5. Determine the rank of object x in Qi.

Standard array-based implementations of circular queues support operations 1 and 2
in O(m) time and operations 3 and 4 in O(1) time. Operation 5 can be implemented in
O(1) time as follows. Underlying the circular queue is an array. For each object x, we
store its position in that array. The rank of object x is just the position of object x in the
array, minus the position of the head of the queue in the array, modulo m.

We can now prove Lemma 46 from Section 4.4.

Proof of Lemma 46. Since each circular queue has exactly m elements, retrieving/ setting
the element at rank i can be done via retrieving/ setting Qi/m[i mod m]. The arithmetic
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takes constant time, as does retrieving/ setting Qi/m[i mod m], so this operation takes
O(1) time.

Insertion at rank i requires inserting into Qi/m at index (i mod m). This pops the last
element off Qi/m, which will then be pushed onto the following queue, and so on. The
insertion into Qi/m takes O(m) = O(√nf) = O(√n) time. The cascading insert-at-head,
pop-from-tail operations take O(1) time each and must be executed no more than n/m
times. Thus insertion takes O(n/m) = O(n/√nf) = O(√n) time.

Deletion at rank i is similar to insertion. We delete index (i mod m) from Qi/m. We
then remove the head of Qn/m, and push it to the previous queue, and so on, until the
vacant position at the end of queue Qi/m is filled. Deletion from Qi/m takes O(m) time,
and there are no more than n/m cascading operations that each take O(1) time. In total,
deletion takes O(m + n/m) = O(√n) time.

The rank of a given pointer ptr can be determined by the rank function in the queue
in which it resides. Let r be its rank. We can then return r + im, where i is the index of
the queue in which the object ptr points to resides.

The data structure must be resized when n becomes too large or too small with respect
to nf . We can build the above data structure in O(n) time and therefore we can afford
to rebuild from scratch when either condition occurs to achieve O(√n) amortized time
insertion and deletion. By starting the rebuild at a fast pace when we approach the
threshold on nf , the amortized bound can be made worst-case.

4.11 A polylogn Space Monte Carlo Data Structure
The idea of the data structure will be to sample at densities 1/2i for i up to about logn. No
matter the size of the data structure, there is a constant probability that the top density
has only one element in it. We repeat the data structure with c⌈logn⌉ independent copies
to achieve a high probability that at any point in time, we may sample one element from
the data structure.

To make the Delete(x) operation functional, we need to determine at which densities
element x resides, as well as have the guarantee that x currently exists in the collection. We
must use the same random bits we used upon insert so we remove x only from the correct
densities. We can use the same model as universal families of hash functions to make the
insert and delete functions dependent on the element, so behavior is deterministic, but
analysis of expected results can be made over the choice of hash functions.

Note that independence of results ofRetrieve() and theDelete(x) function is necessary;
otherwise, we may repeatedly delete the element returned by Retrieve(). If this occurs, the
elements are not sampled according to the desired exponential distribution, since elements
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at top densities have been specifically removed.
Our analysis will be similar to the cutset data structure of [148]. We can now prove

Lemma 54.

Proof of Lemma 54. When we insert x into the data structure, we choose a number l so
that l = 1 with probability 1/2, l = 2 with probability 1/4, and so on, so that l = i with
probability 1/2i. We refer to l as the level of element x. As explained above, we make the
choice of l deterministic to element x so that we can determine the level of x if we delete x.
With a universal family of hash functions, this can be accomplished by taking the hash of
x in binary and using this as the random bit sequence. In this sense, our analysis beyond
this point will reason with the expected behavior over the choice of hash functions.

Let lmax denote the maximum level currently represented in the data structure. We will
maintain a mask for every level 1, . . . , lmax, as well as a counter at each mask. When we
insert x into the data structure, we XOR its value with the mask at its level and increase
the counter. If this causes lmax to increase, we add the necessary masks and counters to
accomplish the task. When we execute Delete(x), we find the level of x and again XOR
its value with all masks at or below its level, this time decreasing the appropriate counters
and possibly decreasing lmax. The Retrieve() function works as follows. We check level
lmax to see if the counter is at 1. If so, we return the element represented in the mask at
level lmax. If not, we report failure.

Let n be an upper bound on the number of elements the collection will need to represent
at any point in time. To achieve a high probability result, we will maintain c⌈logn⌉ copies
of the above data structure. Insert and delete will be done on each copy independently.
The Retrieve() function will only need to be executed until a single copy does not report
failure. We analyze the probability of a single copy reporting failure as follows.

Let k be the number of elements currently represented in the collection. We can ignore
all elements that were previously inserted and then deleted because, assuming indepen-
dence of Delete(x) and Retrieve(), this will not affect the resulting distribution. We
can determine the chance of failure on Retrieve() by analyzing a single probability: the
probability the counter at level ⌊log k⌋ + 1 is equal to 1.

This is the probability that exactly one out of the k elements has level ⌊log k⌋+1. Since
the probability a particular element has level ⌊log k⌋+1 is 1/2⌊log k⌋+1, the probability exactly
one out of the k elements has level ⌊log k⌋ + 1 is

(k
1
)( 1

2⌊log k⌋+1
)(1 − 1

2⌊log k⌋+1
)
k−1

> 1

2
(1 − 1

k
)
k−1

.

The right hand side approaches 1/2e and is above that value for all k ≥ 1. Therefore the
probability the counter at level ⌊log k⌋ + 1 is equal to 1 is at least 1/2e for all values of k.
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We can now reason about the success probability of Retrieve(). We can condition
on the value of lmax. Clearly, lmax ≥ ⌊log k⌋ + 1 with probability at least 1/2e, since the
event the counter at level ⌊log k⌋ + 1 is equal to 1 is included in this probability. Further,
if lmax > ⌊log k⌋ + 1, the probability the counter at lmax is equal to 1 must be at least
1/2e, since it is less likely for an element to have a higher level. Therefore the conditional
probability the counter at lmax is equal to 1 given that lmax is greater than ⌊log k⌋+ 1 is at
least 1/2e. We can then conclude that with probability at least 1/4e2, the counter at lmax
is equal to 1, though with more calculation we could certainly achieve a better constant.

By maintaining c⌈logn⌉ copies of the data structure, the probability of failure in all of
them is then

(1 − 1

4e2
)
c⌈logn⌉

≤ nc log(1− 1
4e2

) ≤ 21n−c.

Therefore, for the right choice of c and by union bound, we can ensure a polynomial-length
sequence of Insert(x), Delete(x), and Retrieve() has arbitrarily low probability of failure.

To analyze space complexity, observe that the space complexity is the sum of the
lmax variable for each copy of the data structure. Since each copy is independent and
by linearity of expectation, the expected space complexity is c⌈logn⌉E(lmax). The value
lmax is the maximum of exponential variables and it can be seen that E(lmax) is O(logn).
Therefore the space complexity is O(log2 n).

The time complexity of Insert(x) and Delete(x) is O(1) + the number of additional
masks/ counters inserted/ deleted. The expected number of masks/ counters inserted is
no more than

∞
∑
i=1

i/2i = 2

therefore Insert(x) and Delete(x) function in constant time per copy, for O(logn) time
overall.

Since the Retrieve() function works with constant probability on each structure, in
expectation we need only a constant number of attempts to have success. Therefore
Retrieve() takes O(1) time. This proves Lemma 54.
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Chapter 5

Faster Dynamic Range Mode

5.1 Introduction
Given a sequence of elements a1, a2, . . . , an, the dynamic range mode problem asks to
support queries for the most frequent element in a specified subsequence al, al+1, . . . , ar
while also supporting insertion or deletion of an element at a given index i. The mode
of a sequence of elements is one of the most basic data statistics, along with the median
and the mean. It is frequently computed in data mining, information retrieval, and data
analytics.

The range mode problem seeks to answer multiple queries on distinct intervals of the
data sequence without having to recompute each answer from scratch. Its study in the data
structure community has shown that the mode is a much more challenging data statistic
to maintain than other natural range queries: while range sum, min or max, median,
and majority all support linear space dynamic data structures with poly-logarithmic or
better time per operation [200, 57, 131, 104, 83], the current fastest dynamic range mode
data structure prior to this work requires a stubborn Θ(n2/3) time per operation [80].
Indeed, range mode is one of few remaining classical range queries to which our currently
known algorithms may be far from optimal. As originally stated by Brodal et al. [44] and
mentioned by Chan et al. [55] in 2011 and 2014, respectively, “The problem of finding the
most frequent element within a given array range is still rather open.”

The current best conditional lower bound, by Chan et al. [55], reduces multiplication
of two

√
n ×√

n boolean matrices to n range mode queries on a fixed array of size O(n).
This indicates that if the current algorithm for boolean matrix multiplication is optimal,
then answering n range mode queries on an array of size O(n) cannot be performed in time
O(n3/2−ε) for ε > 0 with combinatorial techniques, or O(nω/2−ε) time for ε > 0 in general,
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where ω < 2.373 [231, 106] is the square matrix multiplication exponent. This reduction
can be strengthened for dynamic range mode by reducing from the online matrix-vector
multiplication problem [132]. Using O(n) dynamic range mode operations on a sequence
of length O(n), we can multiply a

√
n×√

n boolean matrix with
√
n boolean vectors given

one at a time. This indicates that a dynamic range mode data structure taking O(n1/2−ε)
time per operation for ε > 0 is not possible with current knowledge.

Previous attempts indicate the higher Θ(n2/3) per operation cost as the bound to
beat [55, 80]. Indeed, Õ(n2/3) time per operation1 can be achieved with a variety of
techniques, but crossing the Θ(n2/3) barrier appears much harder.

Progress towards this goal has been established with the recent work of Williams and
Xu [238]. They show that by appealing to Min-Plus product of structured matrices, n
range mode queries on an array of size n can be answered in Õ(n1.4854) time, thus beating
the combinatorial lower bound for batch range mode. This result also shows a separation
between batch range mode and dynamic range mode: while batch range mode can be
completed in O(n1/2−ε) time per operation, such a result for dynamic range mode would
imply a breakthrough in the online matrix-vector multiplication problem.

Range mode is not the first problem shown to be closely related to the Min-Plus
product problem. It is well-known that the all-pairs shortest paths (APSP) problem is
asymptotically equivalent to Min-Plus product [93], in the sense that a T (n) time algo-
rithm to compute the Min-Plus product of two n × n matrices implies an O(T (n)) time
algorithm for APSP in n-node graphs and vice versa. Although it is not known how to
perform Min-Plus product of two arbitrary n×n matrices in time O(n3−ε) for ε > 0, several
problems reduce to Min-Plus products of matrices A and B which have nice structures
that can be exploited. The simplest examples result by restricting edge weights in APSP
problems [213, 216, 244, 54, 243]. Bringmann et al. [39] show Language Edit Distance,
RNA-folding, and Optimum Stack Generation can be reduced to Min-Plus product where
matrix A has small difference between adjacent entries in each row and column. Finally,
the recent work of Williams and Xu [238] reduces APSP in certain geometric graphs, batch
range mode, and the maximum subarray problem with entries bounded by O(n0.62) to a
more general structured Min-Plus product, extending the result of Bringmann et al. All
of the above structured Min-Plus products are solvable in truly subcubic O(n3−ε) time for
ε > 0, improving algorithms in the problems reduced to said product.

The connection and upper bound established by Williams and Xu [238] of batch range
mode to Min-Plus product suggest other versions of the range mode problem may be
amenable to similar improvements. In particular, the ability to efficiently compute a batch
of range mode queries via reducing to a structured Min-Plus product suggests that one

1We use the Õ(⋅) notation to hide poly-logarithmic factors.
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might be able to improve the update time of dynamic range mode in a similar way.

5.1.1 Our Results

In this chapter, we break the Θ(n2/3) time per operation barrier for dynamic range mode.
We do so by adapting the result of Williams and Xu [238]. Specifically, we define the
following new type of data structure problem on the Min-Plus product that can be applied
to dynamic range mode, which may be of independent interest. Then we combine this data
structure problem with the algorithm of Williams and Xu.

Problem 58 (Min-Plus-Query problem). During initialization, we are given two matrices
A,B with dimensions compatible for matrix multiplication. For each query, we are given
three parameters i, j, S, where i, j are two integers, and S is a set of integers. The query
asks mink/∈S{Ai,k +Bk,j}.

Our performance theorem is the following.

Theorem 59. There exists a deterministic data structure for dynamic range mode on a
sequence a1, . . . , an that supports query, insertion, and deletion in worst-case Õ(N0.655994)
time per operation, where N is the maximum size of the sequence at any point in time.
The space complexity of the data structure is Õ(N1.327997).

For a discussion of the per-operation time complexity and space complexity with refer-
ence to the rectangular matrix multiplication constant ω(k) (see Section 5.3 for a formal
definition), see Section 5.4, under the second to last header “Time and Space Complexity”.

Our result shows yet another application of the Min-Plus product to an independently-
studied problem, ultimately showing a dependence of the complexity of dynamic range
mode on the complexity of fast matrix multiplication. Further, in contrast to many other
reductions to Min-Plus in which we must assume a structured input on the original prob-
lem [213, 216, 244, 54, 243, 238], our algorithm works on the fully general dynamic range
mode problem. In this sense, our result is perhaps most directly comparable to the batch
range mode reduction of Williams and Xu [238] and the Language Edit Distance, RNA-
folding, and Optimum Stack Generation reductions of Bringmann et al. [39].

5.1.2 Discussion of Technical Difficulty

Despite the new Õ(n1.4854) time algorithm for batch range mode [238], we cannot directly
apply the result to dynamic range mode. The main issue is the element deletion opera-
tion. In the range mode algorithm of Williams and Xu (and in many other range mode
algorithms), critical points are chosen evenly distributed in the array, and the algorithm
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precomputes the range mode of intervals between every pair of critical points. In [238],
the improvement is achieved via a faster precomputation algorithm, which uses a Min-Plus
product algorithm for structured matrices. However, if element deletion is allowed, the
results stored in the precomputation will not be applicable. For example, an interval be-
tween two critical points could contain x copies of element a, x−1 copies of element b, and
many other elements with frequencies less than x − 1. During precomputation, the range
mode of this interval would be a. However, if we delete two copies of a, there is no easy
way to determine that the mode of this interval has now changed to b.

We overcome this difficulty by introducing the Min-Plus-Query problem, as defined in
Section 5.1.1. Intuitively, in the Min-Plus-Query problem, a large portion of the work of
the Min-Plus product is put off until the query. It also supports more flexible queries.
Using the Min-Plus-Query problem as a subroutine, we will be able to query the most
frequent element excluding a set S of forbidden elements. For instance, in the preceding
example, we would be able to query the most frequent element that is not a. This is the
main technical contribution of this chapter.

Another major difference between our algorithm for dynamic range mode and the batch
range mode algorithm of Williams and Xu [238] is the need for rectangular matrix mul-
tiplication. In our algorithm, we treat elements that appear more than about N2/3 times
differently from the rest (a similar treatment is given in the dynamic range mode algorithm
of Hicham et al. [80]). However, the number of critical points we use is about N1/3; thus
the number of critical points and frequent elements differ. This contrasts with batch range
mode, where elements that appear more than about

√
n times are considered frequent and

the number of critical points used coincides with the number of frequent elements. The
consequence of this difference is that a rectangular matrix product is required for dynamic
range mode, while a square matrix product sufficed in [238].

5.2 Related Work
The range mode problem was first studied formally by Krizanc et al. [167]. They study
space-efficient data structures for static range mode, achieving a time-space tradeoff of
O(n2−2ε) space and O(nε logn) query time for any 0 < ε ≤ 1/2. They also give a solution
occupying O(n2 log logn/ logn) space with O(1) time per query.

Chan et al. [55] also study static range mode, focusing on linear space solutions. They
achieve a linear space data structure supporting queries in O(√n) time via clever use of
arrays, which can be improved to O(

√
n/ logn) time via bit-packing tricks. Their paper

also introduces the conditional lower bound which reduces multiplication of two
√
n ×√

n boolean matrices to n range mode queries on an array of size O(n). As mentioned,
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combined with the presumed hardness of the online matrix vector problem [132], this
result indicates a dynamic range mode data structure must take greater than O(n1/2−ε)
for ε > 0 time per operation. Finally, Chan et al. [55] also give the first data structure for
dynamic range mode. At linear space, their solution achieves O(n3/4 logn/ log logn) worst-
case time per query and O(n3/4 log logn) amortized expected time update, and at O(n4/3)
space, their solution achieves O(n2/3 logn/ log logn) worst-case time query and amortized
expected update time.

Recently, El-Zein et al. [80] improved the runtime of dynamic range mode to worst-case
O(n2/3) time per operation while simultaneously improving the space usage to linear. Prior
to this work, this result was the fastest data structure for dynamic range mode.

A cell-probe lower bound for static range mode has been devised by Greve et al. [123].
Their result states that any range mode data structure that uses S memory cells of w-bit
words needs Ω( logn

log(Sw/n)) time to answer a query.
Via reduction to a structured Min-Plus product, Williams and Xu [238] recently showed

that n range mode queries on a fixed array of size n can be answered in Õ(n(27+2ω)/(19+ω))
time, which is Õ(n1.4854) time for ω < 2.373. Williams and Xu actually show how to
compute the frequency of the mode for each query. We can adapt this method to find
the element that is mode using the following binary search. For query [l, r], we ask the
frequency of the mode in range [l, (l + r)/2]. If it is the same, we repeat the search with
right endpoint in range [l, (l + r)/2]; if it is not, we repeat the search with right endpoint
in range [(l + r)/2, r]. Using this method, we can binary search until we determine when
the frequency of the mode changes, thus finding the element that is mode in an additional
O(logn) queries. The algorithm of Williams and Xu can also be used to speed up the
preprocessing time of the O(n) space, O(√n) query time static range mode data structure
to Õ(n1.4854) time.

Both static and dynamic range mode have been studied in approximate settings [37,
123, 79].

5.3 Preliminaries
We formally define the Min-Plus product problem and the dynamic range mode problem.

Problem 60 (Min-Plus product). The Min-Plus product of an m × n matrix A and an
n × p matrix B is the m × p matrix C = A ⋆B such that Ci,j = mink{A[i, k] +B[k, j]}.

Problem 61 (Dynamic Range Mode). In the dynamic range mode problem, we are given
an initially empty sequence and must support the following operations:

• Insert an element at a given position of the sequence.
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• Delete one element of the sequence.

• Query the most frequent element of any contiguous subsequence. If there are multiple
answers, output any.

It is guaranteed that the size of the array does not exceed N at any point in time.

We use ω to denote the square matrix multiplication exponent, i.e. the smallest real
number such that two n×nmatrices can be multiplied in nω+o(1) time. The current bound on
ω is 2 ≤ ω < 2.373 [106, 231]. In this work, we will use fast rectangular matrix multiplication.
Analogous to the square case, we use ω(k) to denote the exponent of rectangular matrix
multiplication, i.e., the smallest real number such that an n × nk matrix and an nk × n
matrix can be multiplied in nω(k)+o(1) time. Le Gall and Urrutia [107] computed smallest
upper bounds to date for various values of k. In this work, we are mostly interested in
values of ω(k) listed in Figure 5.1.

k Upper Bound on ω(k)
1.75 3.021591

2 3.251640

Figure 5.1: Upper bounds for the exponent of multiplying an n × nk matrix and an nk × n
matrix [107].

It is known that the function ω(k) is convex for k > 0 (see e.g. [168], [173]), so we can
use values of ω(p) and ω(q) to give upper bounds for ω(k) as long as p ≤ k ≤ q.

Fact 62. When 0 < p ≤ k ≤ q, ω(k) ≤ k−p
q−pω(q) +

q−k
q−pω(p).

Combining Figure 5.1 and Fact 62, we obtain the following bound on ω(k) when k ∈
[1.75,2].

Corollary 63. When 1.75 ≤ k ≤ 2, ω(k) ≤ 0.920196k + 1.41125.

5.4 Main Algorithm
A main technical component for our dynamic range mode algorithm is the use of the Min-
Plus-Query problem, which is formally defined in Section 5.1. We are given two matrices
A,B. For each query, we are given three parameters i, j, S, and we need to compute
mink/∈S{Ai,k +Bk,j}.
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If we just use the Min-Plus-Query problem, we can only compute the frequency of the
range mode. Although we can binary search for the most frequent element as described
in Section 5.2, we are also able to return the witness from the Min-Plus-Query problem
organically. This construction may be of independent interest.

Problem 64 (Min-Plus-Query-Witness problem). During initialization, we are given two
matrices A,B. For each query, we are given three parameters i, j, S, where i, j are two
integers, and S is a set of integers. We must output an index k∗ ∉ S such that Ai,k∗+Bk∗,j =
mink/∈S{Ai,k +Bk,j}.

If A is an n × ns matrix and B is an ns × n matrix, then the naive algorithm for Min-
Plus-Query just enumerates all possible indices k for each query, which takes O(ns) time
per query. In order to get a faster algorithm for dynamic range mode, we need to achieve
Õ(n2+s−ε) preprocessing time and Õ(ns−ε + ∣S∣) query time, for some ε > 0, where A,B are
some special matrices generated by the range mode instance. Specifically, matrix B meets
the following two properties:

1. Each row of B is non-increasing;

2. The difference between the sum of elements in the j-th column and the sum of
elements in the (j + 1)-th column is at most ns, for any j.

Williams and Xu [238] give a faster algorithm for multiplying an arbitrary matrix A with
such matrix B, which leads to a faster algorithm for static range mode. We will show that
nontrivial data structures exist for the Min-Plus-Query problem for such input matrices A
and B. Such a data structure will lead to a faster algorithm for dynamic range mode.

In the following lemma, we show a data structure for the Min-Plus-Query problem
when both input matrices have integer weights small in absolute value.

Lemma 65. Let s ≥ 1 be a constant. Let A and B be two integer matrices of dimension
n × ns and ns × n, respectively, with entries in {−W, . . . ,W} ∪ {∞} for some W ≥ 1. Then
we can solve the Min-Plus-Query problem of A and B in Õ(Wnω(s)) preprocessing time
and Õ(∣S∣) query time. The space complexity is Õ(Wn2 + n1+s).

Proof. The algorithm uses the idea by Alon, Galil and Margalit in [9], which computes the
Min-Plus product of A,B in Õ(Wnω(s)) time.

In their algorithm, they first construct matrix A′ defined by

A′
i,k = { (ns + 1)Ai,k+W if Ai,k ≠∞,

0 otherwise.
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We can define B′ similarly. Then the product A′B′ captures some useful information about
the Min-Plus product of A and B. Namely, for each entry (A′B′)i,j, we can uniquely write
it as ∑t≥0 r

i,j
t (ns + 1)t for integers 0 ≤ ri,jt ≤ ns. Note that ri,jt exactly equals the number of

k such that Ai,k +Bk,j = t− 2W . Thus, we can use A′B′ to compute the Min-Plus Product
of A and B.

In our algorithm, we use a range tree to maintain the sequence ri,jt for each pair of
i, j. The preprocessing takes Õ(Wnω(s)) time, which is the time to compute A′B′ and the
sequences ri,jt .

During each query, we are given i, j, S. We enumerate each k ∈ S, and decrement
ri,jAi,k+Bk,j+2W in the range tree if Ai,j + Bk,j < ∞. After we do this for every k ∈ S, we
query the range tree for the smallest t such that ri,jt ≠ 0, so t − 2W is the answer to the
Min-Plus-Query query. After each query, we need to restore the values of ri,j, which can
also be done efficiently. The query time is Õ(∣S∣), since each update and each query of
range tree takes Õ(1) time. The space complexity should be clear from the algorithm.

In the previous lemma, the data structure only answers the Min-Plus-Query problem.
In all subsequent lemmas, the data structure will be able to handle the Min-Plus-Query-
Witness problem.

In the next lemma, we use Lemma 65 as a subroutine to show a data structure for
the Min-Plus-Query-Witness problem when only matrix A has small integer weights in
absolute value.

Lemma 66. Let s ≥ 1 be a constant. Let A and B be two integer matrices of dimension
n×ns and ns ×n, respectively, where A has entries in {−W, . . . ,W}∪ {∞} for some W ≥ 1,
and B has arbitrary integer entries represented by polylogn bit numbers. Then for every
integer 1 ≤ P ≤ ns, we can solve the Min-Plus-Query-Witness problem of A and B in
O(nsP Wnω(s)) preprocessing time and O(∣S∣ + P ) query time. The space complexity is
Õ(Wn2+s

P + n1+2s

P ).

Proof. For simplicity, assume P is a factor of ns. We sort each column of matrix B and
put entries whose rank is between (`− 1)P + 1 and `P into the `-th bucket. We use Kj,` to
denote the set of row indices of entries in the `-th bucket of the column j. We use Lj,` to
denote the smallest entry value of the bucket Kj,`, and use Hj,` to denote the largest entry
value. Formally,

Lj,` = min
k∈Kj,`

Bk,j and Hj,` = max
k∈Kj,`

Bk,j.

For each ` ∈ [ns/P ], we do the following2. We create an ns ×n matrix B` and initialize
2We use [n], with n integer, to denote the set {1,2, . . . , n}.
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all its entries to ∞. Then for each column j, if Hj,` − Lj,` ≤ 2W (we will call it a small
bucket), we set B`

k,j ∶= Bk,j −Lj,` −W for all k ∈ Kj,`. We will handle the case Hj,` −Lj,` >
2W (large bucket) later. Clearly, all entries in B` have values in {−W, . . . ,W} ∪ {∞},
so we can use the algorithm in Lemma 65 to preprocess A and B` and store the data
structure in D`. Also, for each pair (i, j), we create a range tree T i,jsmall on the sequence
(A ⋆ B1)i,j, (A ⋆ B2)i,j, (A ⋆ B3)i,j, . . ., (A ⋆ Bns/P )i,j, which stores the optimal Min-Plus
values when k is from a specific small bucket. This part takes Õ(nsP Wnω(s)) time. The space
complexity is ns

P times more than the space complexity of Lemma 65, so space complexity
of this part is Õ(Wn2+s

P + n1+2s

P ).
We also do the following preprocessing for buckets where Hj,` − Lj,` > 2W . We first

create a 0/1 matrix Ā where Āi,k = 1 if and only if Ai,k ≠ ∞. Then for each ` ∈ [ns/P ],
we create a 0/1 matrix B̄` such that B̄`

k,j = 1 if and only if k ∈ Kj,` and Hj,` − Lj,` > 2W .
Then we use fast matrix multiplication to compute the product ĀB̄`. If Kj,` is a large
bucket, the (i, j)-th entry of ĀB̄` is the number of k ∈ Kj,` such that Ai,k < ∞; if Kj,` is
a small bucket, the (i, j)-th entry is 0. For each pair (i, j), we create a range tree T i,jlarge

on the sequence (ĀB̄1)i,j, (ĀB̄2)i,j, (ĀB̄3)i,j, . . . , (ĀB̄ns/P )i,j. This part takes Õ(nsP nω(s))
time, which is dominated by the time for small buckets. The space complexity is also
dominated by the data structures for small buckets.

Now we describe how to handle a query (i, j, S). First consider small buckets. In O(∣S∣)
time, we can compute the set of small buckets Kj,` that intersect with S. For each such
Kj,`, we can query the data structure D` with input (i, j, S∩Kj,`) to get the optimum value
when k ∈ Kj,`. For each small bucket that intersects with S, we can set its corresponding
value in the range tree T i,jsmall to ∞, then we can compute the optimum value of all small
buckets that do not intersect with S by querying the minimum value of the range tree
T i,jsmall. After this query, we need to restore all values in the range tree. It takes Õ(∣S∣) time
to handle small buckets on query.

Now consider large buckets. Intuitively, we want to enumerate indices in all large
buckets Kj,` such that there exists an index k ∈Kj,` ∩ ([ns]∖S) where Ai,k <∞. However,
doing so would be prohibitively expensive. We will show that we only need two such
buckets. Consider three large buckets l1 < l2 < l3. Pick any k1 ∈ Tj,l1 , k3 ∈ Tj,l3 such that
Ai,k1 <∞. Since

Ai,k1 +Bk1,j ≤W +Lj,l2 <W +Hj,l2 − 2W < Ai,k3 +Bk3,j,

k3 can never be the optimum. Thus, it suffices to find the smallest two buckets such that
there exists an index k ∈ Kj,` ∩ ([ns] ∖ S) where Ai,k < ∞, and then enumerate all indices
in these two buckets. To find such two buckets, we can enumerate over all indices k ∈ S,
and if Ai,k < ∞ we can decrement the corresponding value in the range tree T i,jlarge. Thus,
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we can compute the two smallest buckets by querying the two earliest nonzero values in
the range tree. We also need to restore the range tree after the query. The range tree part
takes Õ(∣S∣) time and scanning the two large buckets requires O(P ) time. Thus, this step
takes Õ(∣S∣ + P ) time.

At this point, we will know the bucket that contains the optimum index k∗. Thus, we
can iterate all indices in this bucket to actually get the witness for the Min-Plus-Query-
Witness query. It takes O(P ) time to do so.

In summary, the preprocessing time, query time, and space complexity meet the promise
in the lemma statement.

In the following lemma, we show a data structure for the Min-Plus-Query-Witness
problem when the matrix B has the bounded difference property, which means that nearby
entries in each row have close values. The proof adapts the strategy of [238].

Lemma 67. Let s ≥ 1 be a constant. Let A be an n×ns integer matrix, and let B be an ns×
n integer matrix. It is guaranteed that there exists 1 ≤ ∆ ≤ min{n,W}, such that for every
k, ∣Bk,j1 −Bk,j2 ∣ ≤W as long as ⌈j1/∆⌉ = ⌈j2/∆⌉. Then for every L = Ω(∆), we can solve the
Min-Plus-Query-Witness problem of A and B in Õ(∆2 n

s

LWnω(s)+ n2+s

∆ ) preprocessing time
and Õ(L) query time, when ∣S∣ < L. The space complexity is Õ(∆2Wn2+s

L + ∆2n1+2s

L + n2+s

∆ ).

Proof. Preprocessing Step 1: Create an Estimation Matrix
First, we create a matrix B̂, where B̂k,j = Bk,⌈j/∆⌉∆. By the property of matrix B,

∣B̂k,j −Bk,j ∣ ≤W for every k, j. For each pair (i, j), we compute the L-th smallest value of
Ai,k + B̂k,j among all 1 ≤ k ≤ ns, and denote this value by ĈL

i,j. Notice that ĈL
i,j = ĈL

i,⌈j/∆⌉∆,
so it suffices to compute ĈL

i,j when j is a multiple of ∆, and we can infer other values
correctly. It takes O(ns) time to compute each ĈL

i,j, so this step takes O(n2+s/∆) time.
If we similarly define CL

i,j as the L-th smallest value of Ai,k +Bk,j among all 1 ≤ k ≤ ns,
then ∣CL

i,j − ĈL
i,j ∣ ≤W by the following claim, whose proof is omitted for space constraint.

Claim. Given two sequences (ak)mk=1 and (bk)mk=1 such that ∣ak − bk∣ ≤ W , then the L-th
smallest element of a and the the L-th smallest element of b differ by at most W .

Also, in Õ(n2+s/∆) time, we can compute a sorted list Li,jsmall of indices k sorted by the
value Ai,k + B̂k,j − ĈL

k,j, for every i, and every j that is a multiple of ∆.
The space complexity in this step is not dominating.

Preprocessing Step 2: Perform Calls to Lemma 66
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For some integer ρ ≥ 1, we will perform ρ rounds of the following algorithm. At the r-th
round for some 1 ≤ r ≤ ρ, we randomly sample jr ∈ [n], and let Ari,k ∶= Ai,k +Bk,jr − ĈL

i,jr

and Br
k,j ∶= Bk,j − Bk,jr . Clearly, Ari,k + Br

k,j = Ai,k + Bk,j − ĈL
i,jr . For each pair (i, k), we

find the smallest r such that ∣Ari,k∣ ≤ 3W . We keep these entries as they are and replace
all other entries by ∞. For every (i, k), there exists at most one r such that Ari,k ≠ ∞.
Then we use Lemma 66 to preprocess Ar and Br for every 1 ≤ r ≤ ρ. Thus, this part takes
O(ρnsP Wnω(s)) time, for some integer P to be determined later. Note that this parameter
also affects the query time. This step stores ρ copies of the data structure from Lemma 66,
so the space complexity is Õ(ρWn2+s

P + ρn1+2s

P ).
Note that this step is the only step that uses randomization. We can use the method

of [238], Appendix A, to derandomize it. We omit the details for simplicity.

Preprocessing Step 3: Handling Uncovered Pairs
For a pair (i, k), if Ari,k ≠∞ for any r, we call (i, k) covered ; otherwise, we call the pair

(i, k) uncovered. For each pair (i, j), we enumerate all k such that ∣Ai,k + B̂k,j − ĈL
i,j ∣ ≤ 2W

and (i, k) is uncovered. Notice that since Ai,k + B̂k,j − ĈL
i,j = Ai,k + B̂k,⌈j/∆⌉∆ − ĈL

i,⌈j/∆⌉∆, we
only need to exhaustively enumerate all k ∈ [ns] when j is a multiple of ∆. Thus, if the
total number of (i, k, j) where ∣Ai,k + B̂k,j − ĈL

i,j ∣ ≤ 2W and (i, k) is uncovered is X, then
we can enumerate all such triples (i, k, j) in O(X + n2+s/∆) time.

It remains to bound the total number of triples that satisfy the condition. Fix an
arbitrary pair (i, k), and suppose the number of j such that ∣Ai,k + B̂k,j − ĈL

i,j ∣ ≤ 2W is at
least (10+ s)n lnn/ρ. Then with probability at least 1− (1− (10+s) lnn

ρ )ρ ≥ 1− 1
n10+s , we pick

a jr where ∣Ai,k + B̂k,jr − ĈL
i,jr ∣ ≤ 2W . Therefore,

∣Ari,k∣ = ∣Ai,k +Bk,jr − ĈL
i,jr ∣ ≤ ∣Ai,k + B̂k,jr − ĈL

i,jr ∣ + ∣B̂k,jr −Bk,jr ∣ ≤ 3W,

which means (i, k) is covered. Therefore, with high probability, all pairs of (i, k) where the
number of j such that ∣Ai,k + B̂k,j − ĈL

i,j ∣ ≤ 2W is at least (10 + s)n lnn/ρ will be covered.
In other words, X = O(n1+s ⋅ n lnn/ρ) = Õ(n2+s/ρ).

For each pair (i, j), if we enumerate more than L indices k, we only keep the L values
of k that give the smallest values of Ai,k + Bk,j. We call this list Li,jtriple. From previous
discussion, the time cost in this step is Õ(n2+s/ρ + n2+s/∆). Since we need to store all the
triples, the space complexity is O(n2+s/ρ).
Handling Queries

Now we discuss how to handle queries. For each query (S, i, j), let k∗ = arg mink/∈S Ai,k+
Bk,j be the optimum index. Consider two cases:
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• (i, k∗) is covered. By definition of being covered, there exists a round r such that
Ari,k∗ = Ai,k∗ +Bk∗,jr − ĈL

i,jr , so Ari,k∗ +Br
k∗,j = Ai,k∗ +Bk∗,j − ĈL

i,jr . Therefore, we can
query the data structure in Lemma 66 for every Ar and Br and denote br as the
result. The answer is given by the smallest value of br + ĈL

i,jr over all r. The witness
is given by the data structure of Lemma 66.

Note that when querying Ar and Br, we only need to pass the set {k ∈ S ∶ Ari,k ≠∞}.
For every k ∈ S, there is at most one r such that Ari,k ≠∞, so the total size of the sets
passing to the data structure of Lemma 66 is ∣S∣. Thus, this case takes O(∣S∣ + ρP )
time.

• (i, k∗) is uncovered. There are still two possibilities to consider in this case.

– Possibility I: Ai,k∗ + B̂k∗,j − ĈL
i,j < −2W . In this case,

Ai,k∗ +Bk∗,j ≤ Ai,k∗ + B̂k∗,j +W < ĈL
i,j −W,

so the optimum value is smaller than ĈL
i,j. By reading the list Li,⌈j/∆⌉∆

small , we can
effectively find all such k where Ai,k + B̂k,j − ĈL

i,j < −2W in time linear to the
number of such k. The number of such k is at most L, by the definition of ĈL

i,j.
Thus, this part takes O(L) time.

– Possibility II: Ai,k∗ + B̂k∗,j − ĈL
i,j ≥ −2W . In fact, in this case, we further have

Ai,k∗ + B̂k∗,j − ĈL
i,j ≤ Ai,k∗ +Bk∗,j −CL

i,j + 2W ≤ 2W,

where Ai,k∗ + Bk∗,j − CL
i,j ≤ 0 because ∣S∣ < L. Therefore, in this case, we have

∣Ai,k∗ + B̂k∗,j − ĈL
i,j ∣ ≤ 2W , so we can enumerate all indices in Li,jtriple and take the

best choice. This takes O(L) time.

Time and Space Complexity
In summary, the preprocessing time is

Õ (ρn
s

P
Wnω(s) + n2+s/∆ + n2+s/ρ) ,

and the query time is Õ(L + ρP ). To balance the terms, we can set ρ = ∆ and P = L
∆ to

achieve a Õ(∆2 n
s

LWnω(s) + n2+s

∆ ) preprocess time and a Õ(L) query time. Note that since
we need P ≥ 1, we must have L = Ω(∆).
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From the preprocessing steps, the space complexity is Õ(ρWn2+s

P +ρn1+2s

P +n2+s/ρ). Plug-
ging in ρ = ∆ and P = L

∆ reduces this to

Õ (∆2Wn2+s

L
+ ∆2n1+2s

L
+ n

2+s

∆
) ,

as given in the statement of the lemma.

The next lemma is our last data structure for Min-Plus-Query-Witness problems.

Lemma 68. Let s ≥ 1 be a constant. Let A be an n×ns integer matrix and B be an ns×n
integer matrix. Suppose matrix B satisfies

1. Each row of B is non-increasing;

2. The difference between the sum of elements in the j-th column and the sum of
elements in the (j + 1)-th column is at most ns, for any j.

Then for every positive integer L = Ω(nω(s)−2), we can solve the Min-Plus-Query-Witness
problem of A and B in Õ(n 8

5
+s+ 1

5
ω(s)L−

1
5 ) preprocessing time and Õ(L) query time, when

∣S∣ < L. The space complexity is Õ(L− 1
5n

18
5
+s− 4

5
ω(s) +L− 3

5n
9
5
+2s− 2

5
ω(s) +L− 1

5n
8
5
+s+ 1

5
ω(s)).

Proof. Let ∆,W ≥ 1 be small polynomials in n to be fixed later. Define I(j) to be the
interval [j −∆ + 1, j].

Let j′ be any multiple of ∆. By property 2 of matrix B, ∑ns

k=1Bk,j −∑ns

k=1Bk,j+1 ≤ ns for
any j ∈ I(j′). Thus, we have

ns

∑
k=1

Bk,j′−∆+1 −
ns

∑
k=1

Bk,j′ ≤ ∆ns.

By averaging, there are at most ∆ns/W indices k ∈ [ns] such that Bk,j′−∆+1 − Bk,j′ >
W . We create a new matrix B̂, initially the same as matrix B. For each k such that
Bk,j′−∆+1 − Bk,j′ > W , and for each j ∈ I(j′), we set B̂k,j as M , where M is some large
enough integer. After this replacement, B̂k,j′−∆+1 − B̂k,j′ ≤W for any k and any j′ multiple
of ∆. Also, since B̂k,j′−∆+1 ≥ B̂k,j ≥ B̂k,j′ for any j ∈ I(j′), we have that ∣B̂k,j1 − B̂k,j2 ∣ ≤W
as long as ⌈j1/∆⌉ = ⌈j2/∆⌉. Therefore, we can use Lemma 67 to preprocess A and B̂ in
O(∆2 n

s

LWnω(s) + n2+s

∆ ) time. The space complexity is Õ(∆2Wn2+s

L + ∆2n1+2s

L + n2+s

∆ ).
On the other hand, note that B̂ differs with B on at most n1+s∆/W entries, so we need

to do some extra preprocessing to handle those entries. For each pair (i, j), we initialize
a range tree T (i,j) whose elements are all ∞ (it takes Õ(1) time to initialize each range
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tree if we implement it carefully). Then for every k such that Bk,j ≠ B̂k,j, we set the k-th
element in T (i,j) as Ai,k +Bk,j. The total number of operations we perform in all the range
trees are O(n2+s∆/W ), so this part takes Õ(n2+s∆/W ) time. The space complexity is also
Õ(n2+s∆/W ).

During a query (S, i, j), we first query the data structure in Lemma 67 on matrix A
and B̂ with parameters (S, i, j). Then we query the minimum value from the range tree
T (i,j) after setting all Ai,k +Bk,j as ∞ for k ∈ S. Taking the minimum of these two queries
gives the answer. The optimum index k∗ is either given by the data structure of Lemma 67
or can be obtained from the range tree.

Thus, the preprocessing time of the algorithm is

Õ(∆2n
s

L
Wnω(s) + n

2+s

∆
+ n2+s∆/W ),

and the query time is Õ(L). We get the desired preprocessing time by setting ∆ =
L1/5n

2
5
− 1

5
ω(s) and W = ∆2. Since we need ∆ ≥ 1, we require that L = Ω(nω(s)−2). In

Lemma 67, we also requires that L = Ω(∆), but this is always true when L = Ω(nω(s)−2).
By previous discussion, the space complexity is Õ(∆2Wn2+s

L + ∆2n1+2s

L + n2+s

∆ +n2+s∆/W ).
Plugging in the value for ∆ and W simplifies the complexity to

Õ(L−1/5n18/5+s−4ω(s)/5 +L−3/5n9/5+2s−2ω(s)/5 +L−1/5n8/5+s+ω(s)/5).

Finally, we can apply the data structure of Lemma 68 to prove Theorem 59.

Proof of Theorem 59. For clarity, we will use element to refer to a specific item ai of the
sequence and use value to refer to all elements of a given type. Given a pointer to an
element of the sequence ai, we assume the ability to look up its index i in the sequence in
Õ(1) time by storing all elements of the sequence in a balanced binary search tree with
worst-case time guarantees (e.g. a red-black tree). Thus we can go from index i to element
ai and back via appropriate rank and select queries on the balanced binary search tree.
We may also add or remove an element ai from the sequence, and thus the binary search
tree, in Õ(1) time.

Let T1, T2, T3 be three parameters of the algorithm. Parameter T1 is a threshold that
controls the number of “frequent” colors, T2 controls how frequently the data structure is
rebuilt, and T3 represents the size of blocks in the algorithm.

We call values that appear more than N/T1 times frequent and all other values infre-
quent. Thus, there are at most T1 frequent values at any point in time. Note that a fixed
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value can change from frequent to infrequent, or from infrequent to frequent, via a deletion
or insertion.

Infrequent Values
First, we discuss how to handle infrequent values. We maintain N

T1
balanced search

trees BST 1, . . . ,BST N
T1

. For balanced search tree BST k, we prepare the key/value pairs
in the following way. Fix a given value of the sequence. Say all its occurrences are at
indices i1, i2, . . . , it. Then we insert the key/value pairs (ix, ix+k−1) to BST k for every
1 ≤ x ≤ t − k + 1. However, the indices themselves would need updating when sequence a is
updated. Instead of inserting the indices themselves, we insert corresponding pointers to
the nodes of the binary search tree that holds sequence a. That way we can perform all
comparisons using binary search tree operations in Õ(1) time, without needing to update
indices when sequence a changes. We also augment each balanced search tree BST i so
that every subtree stores the smallest value y of any pair (x, y) in the subtree. After an
insertion or deletion, we need to update a total of O((NT1 )

2) pairs. Thus, we can maintain
these balanced search trees in Õ((NT1 )

2) time per operation.
During a query [l, r], we iterate through all the balanced search trees BST 1, . . . ,BST N

T1

.
If there exists a pair (i1, i2) ∈ BST k such that l ≤ i1 ≤ i2 ≤ r, then the range mode is at
least k. Thus, if the range mode is an infrequent value, we can find its frequency and
corresponding value by querying the balanced search trees. The query time is Õ(NT1 ),
which is not the dominating term.

Newly Modified Values
We now consider how to handle frequent values. We handle newly modified values and

unmodified values differently. We will rebuild our data structure after every T2 operations,
and call values that are inserted or deleted after the last rebuild newly modified values.

For every value, we maintain a balanced search tree of occurrences of this value in
the sequence. It takes Õ(1) time per operation to maintain such balanced search trees.
Thus, given an interval [l, r], it takes Õ(1) time to query the number of occurrences of a
particular value in the interval. We use this method to query the number of occurrences
of each newly modified value. Since there can be at most T2 such values, this part takes
Õ(T2) time per operation.

Data Structure Rebuild
It remains to handle the frequent, not newly modified values during each rebuild. In

this case, we will assume we can split the whole array roughly equally into a left half and
right half. We can recursively build the data structure on these two halves so that we may
assume a range mode query interval has left endpoint in the left half and right endpoint
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in the right half. The recursive construction adds only a poly-logarithmic factor to the
complexity.

We split the left half and the right half into consecutive segments of length at most T3,
so that there are O(N/T3) segments. We call the segments P1, P2, . . . , Pm in the left half
and Q1,Q2, . . . ,Qm in the right half, where segments with a smaller index are closer to the
middle of the sequence.

Let v1, v2, . . . , vl be the frequent values during the rebuild. We create a matrix A such
that Ai,k equals the negation of the number of occurrences of vk in segments P1, . . . , Pi;
similarly, we create a matrix B such that Bk,j equals the negation of the number of occur-
rences of vk in segments Q1, . . . ,Qj. Note that the negation of the value Ai,k +Bk,j is the
frequency of value vk in the interval from Pi to Qj. It is not hard to verify that matrix
B satisfies the requirement of Lemma 68. We take the negation here since Lemma 68
handles (min,+)-product instead of (max,+)-product. Then we use the preprocessing part
of Lemma 68 with matrices A,B, and L = T2. If we let T1 = N t1 , T2 = N t2 , T3 = N t3 , then
in the notation of Lemma 68, n = m = O(N/T3) = O(N1−t3) and ns = O(T1) = O(N t1), so
s = t1

1−t3 and L = N t2 . Thus, by Lemma 68 the rebuild takes

Õ(N (1−t3)( 8
5
+ t1

1−t3
+ 1

5
ω( t1

1−t3
))− 1

5
t2)

time. Since we perform the rebuild every T2 operations, the amortized cost of rebuild is

Õ(N (1−t3)( 8
5
+ t1

1−t3
+ 1

5
ω( t1

1−t3
))− 6

5
t2)

per operation.
Now we discuss how to handle queries for frequent, unmodified elements. For a query

interval [l, r], we find all the segments inside the interval [l, r]. The set of such segments
must have the form P1,∪⋯ ∪ Pi ∪Q1 ∪⋯ ∪Qj for some i, j. We scan through all elements
in [l, r] ∖ (P1 ∪⋯∪Pi ∪Q1 ∪⋯∪Qj), and use their frequency to update the answer. Since
the size of segments is O(T3), the time complexity to do so is Õ(T3).

For the segments P1, . . . , Pi,Q1, . . . ,Qj, we query the data structure in Lemma 68 with
S being the set of newly modified elements. The answer will be the most frequent element
in the interval from Pi to Qj that is not newly modified. By Lemma 68 this takes O(L) =
O(N t2) time per operation.

Time and Space Complexity
In summary, the amortized cost per operation is

Õ(N2−2t1 +N t2 +N t3 +N (1−t3)( 8
5
+ t1

1−t3
+ 1

5
ω( t1

1−t3
))− 6

5
t2).
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To balance the terms, we set t1 = 1 − 1
2t2, and t3 = t2. The time complexity thus becomes

Õ(N t2 +N (1−t2)( 8
5
+ 1−0.5t2

1−t2
+ 1

5
ω( 1−0.5t2

1−t2
))− 6

5
t2).

By observation, we can note that the optimum value of 1−0.5t2
1−t2 lies in [1.75,2]. Thus, we

can plug in Corollary 63 and use t2 = 0.655994 to balance the two terms. This gives an
Õ(N0.655994) amortized time per operation algorithm.

The space usage has two potential bottlenecks. The first is the space to store
BST 1, . . . ,BST N

T1

for handling infrequent elements, which is Õ(N2

T1
). The second is the

space used by Lemma 68, which is

Õ(N−t2/5N (1−t3)(18/5+s−4ω(s)/5) +N−3t2/5N (1−t3)(9/5+2s−2ω(s)/5) +N−t2/5N (1−t3)(8/5+s+ω(s)/5)).

By plugging in the values for t2, t3 and s, the space complexity becomes Õ(N1.327997), with
the Õ(N2

T1
) term being the dominating term.

Worst-Case Time Complexity
By applying the global rebuilding of Overmars [194], we can achieve a worst-case time

bound. The basic idea is that after T2 operations, we don’t immediately rebuild the Min-
Plus-Query-Witness data structure. Instead, we rebuild the data structure during the
next T2 operations, spreading the work evenly over each operation. To answer queries
during these T2 operations, we use the previous build of the Min-Plus-Query-Witness data
structure. By this technique, the per-operation runtime can be made worst-case.
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Chapter 6

Approximate Succinct Range Mode and
Range Selection

6.1 Introduction
The mode and median of a data set are important statistics, widely used across many
disciplines. Thus, they are frequently computed in applications for data mining, infor-
mation retrieval and data analytics. The range mode and median problems further aim
at speeding up the computation of the mode and median in an arbitrary subrange of the
given sequence of elements, and thus have been studied extensively [167, 37, 203, 204, 44,
123, 144, 44, 131, 55, 111, 58, 124, 80]. In these problems, we preprocess a sequence of
elements c1, c2, . . . , cn to answer queries. Given two indices a and b with 1 ≤ a ≤ b ≤ n,
a range mode query asks for a position of the most frequent element in ca..b (ca..b denotes
ca, . . . , cb), while a range median query asks for the position of the median element in ca..b.
A generalization of range median is the range selection query, which asks for the position
of the kth smallest element in ca..b for any given k. Thus a range selection query becomes
range median if k = ⌈(b − a + 1)/2⌉.

Due to the massive amounts of electronic data available, linear space data structures
are often preferred by modern applications. The following are the best solutions to these
query problems that use O(n) words of space. In static settings, Chan et al. [55] showed
how to answer a range mode query in O(

√
n/ lgn) time. By proving a conditional lower

bound, they also gave strong evidence that, if linear space is required, this query time can-
not be improved significantly using purely combinatorial methods with current knowledge.
When updates to elements are allowed, El-Zein et al. [80] showed how to support both
range mode queries and updates in O(n2/3) time. For range selection, the solution of Chan
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and Wilkinson [58] answers queries in O(lg k/ lg lgn+1) time, matching the lower bound of
Jørgensen and Larsen [144] under the cell probe model. He et al. [131] showed how to sup-
port range selection in O((lgn/ lg lgn)2) worst-case time and updates in O((lgn/ lg lgn)2)
amortized time.

The query times for range mode in both linear space data structure solutions and con-
ditional lower bounds are much larger than that for many other query problems, including
range median. To provide faster support for queries, researchers have studied approximate
range mode [123]. To define this query, let Fx(ca..b) denote the frequency of an element
x in ca..b and F (ca..b) denote the frequency of the mode of ca..b (F (ca..b) = maxxFx(ca..b)).
Then a (1 + ε)-approximate range mode query asks for the position of an element x in
ca..b such that (1 + ε) ⋅ Fx(ca..b) ≥ F (ca..b) for some positive ε. This element is called a
(1 + ε)-approximate mode of ca..b. Previously, the best result on this problem is that of
Greve et al. [123], which uses O(n/ε) words of space to support queries in O(lg(1/ε)) time,
for any ε ∈ (0,1).

Approximate range median can be defined similarly. We say that the ith smallest
element in the query range ca..b has rank i. Then, for an approximation ratio α ∈ (0,1/2),
an α-approximate range median query asks for the position of an element x whose rank
in ca..b is between ⌈s/2⌉ − αs and ⌈s/2⌉ + αs, where s = b − a + 1. Bose et al. [37] studied
this problem, for which they proposed a data structure occupying O(n/α) words of space
that answers queries in constant time. An α-approximate range selection query can also
be defined, which, for any given k, asks for the position of an element x whose rank in
ca..b is between k − αs and k + αs. However, this problem has not been formally studied
previously.

To further improve the space efficiency of data structures, researchers have recently
studied various query problems in the encoding model [92, 124]. Under this model, a data
structure is not allowed to store or assume access to the original data set. Instead, it should
occupy as little space as possible while providing support for queries. For example, in this
model, Fischer and Heun [92] studied the range minimum query problem, which asks for
the position of the smallest element in ca..b. They proposed a data structure occupying
only 2n + o(n) bits with constant query time. The range selection problem has also been
considered in this model: Grossi et al. [124] proposed an encoding data structure occupying
O(n lgκ) bits for any fixed positive integer κ, using which a range selection query can be
answered in O(lg k/ lg lgn + 1) time for any k given in the query with 1 ≤ k ≤ κ.

Naturally, encoding data structures are only relevant when their space occupancy is
asymptotically less than the input data, at least for certain choices of parameters. The
space costs of previous results on approximate range mode or median, however, match the
size of the input sequence asymptotically when ε or α is a constant and become superlinear
when ε or α is in o(1). Thus, we study the problem of designing encoding data structures
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Query Type Query Time Update Time Space in Bits Source

Exact

O(nδ logn) - O(n2−2δ lgn) [167]
O(1) - O(n2 log logn/ lgn) [204]
O(

√
n/ logn) - O(n lgn) [55]

O(n3/4 logn/ log logn) O(n3/4 log logn) O(n lgn) [55]
O(n2/3 logn/ log logn) O(n2/3 logn/ log logn) O(n4/3 lgn) [55]
O(n2/3) O(n2/3) O(n lgn) [80]
O(lg lgn + lg(1/ε)) - O(n lgn/ε) [37]

(1 + ε)− O(lg(1/ε)) - O(n lgn/ε) [123]
Approximation O(lg(1/ε)) - O(n/ε) new

O(lgm/ lg lgm) O(lgn/ε2) O(m lgm) new

Table 6.1: Static and Dynamic Range Mode Query History. In this table, δ is an arbitrary
constant in (0,1/2) and m = min(n lgn/ε, n/ε2).

of approximate range mode, median and selection queries, to improve the space efficiency
of previous solutions. Furthermore, previously no research has been done on dynamic
approximate range mode, while the dynamic exact data structures for range mode require
polynomial query and update times. Therefore, we also study approximate range mode
queries under dynamic settings, to provide substantially faster support for queries and
updates.

Our Results. For (1 + ε)-approximate range mode, where 0 < ε < 1, we design an
encoding data structure using O(n/ε) bits that can answer a query in O(lg(1/ε)) time.
This is an improvement upon the previous best result of Greve et al. [123], since we match
their query time while saving the space cost by a factor of lgn; we assume a word RAM
model in which each word has Θ(lgn) bits. We also prove a lower bound to show that
any data structure supporting (1+ ε)-approximate range mode must use Ω(n/(1+ ε)) bits
for any positive ε. This means that our space cost is asymptotically optimal for constant
ε. When ε is not necessarily a constant, as long as ε = ω(1/ lgn), our data structure uses
o(n lgn) bits, i.e., o(n) words, which is asymptotically less than the space needed to encode
the original sequence itself.

For α-approximate range selection, where 0 < α < 1/2, we design encoding data struc-
tures for two variants of this problem. If k is fixed and given in advance, either as a constant
or as a function of the size, s, of the query range satisfying certain reasonable constraints
(e.g., k = ⌈s/2⌉ for range median), we have a solution occupying O(n/α2) bits that can
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Query Type Query Time Update Time Space in Bits Source

Exact

O(1) - O((n lg lgn)2/ lgn) [204]
O(lgn/ lg lgn) - O(n logn) [44]

O(lg k/ lg lgn + 1) - O(n lgn) [58]
O(lg2 n) O(lg2 n) O(n lg2 n) [44]

O((lgn/ lg lgn)2) O((lgn/ lg lgn)2) O(n lg2 n/ lg lgn) [44]
O((lgn/ lg lgn)2) O((lgn/ lg lgn)2) O(n lgn) [131]

α −Approximation O(1) - O(n lgn/α) [37]
(with fixed k) O(1) - O(n/α2) new

α −Approximation O(1) - O(n/α3) new

Table 6.2: Static and Dynamic Range Median and Selection Query History.

answer a query in constant time. If k is not known beforehand and different values of k
could be given with each query, we have another encoding structure in O(n/α3) bits with
constant query time. Our query time matches that of the previous best data structure of
Bose et al. [37] which supports range median only, while we decrease the space cost by a
factor of lgn when α is a constant. As we also show that any approximate range selection
data structure must use at least Ω(n) bits, our data structures are asymptotically optimal
for constant α.

In dynamic settings, for any ε ∈ (0,1), we present an O(m lgm)-bit structure where
m = min(n lgn/ε, n/ε2). It supports (1 + ε)-approximate range mode in O(lgm/ lg lgm)
time and insertions/deletions in O(lgn/ε2) time. When ε is an arbitrary constant in (0,1),
this data structure uses O(n) words, answers queries in O(lgn/ lg lgn) time, and supports
updates in O(lgn) time. As the best result on dynamic exact range mode [80] requires
O(n2/3) time for both queries and updates, this approximate solution is much faster for
constant ε. It is also the first result on dynamic approximate range mode. Finally, we
apply the technique to solve static (1 + ε)-approximate three-sided range mode in two
dimensions, achieving O(lgm) time query and occupying O(m lgm) words of space, where
again m = min(n lgn/ε, n/ε2). This is another new approximate query problem.

Tables 6.1 and 6.2 compare our results to previous work to be surveyed in Section 6.2.

6.2 Previous Work
Range Mode. Krizanc et al. [167] first studied the static range mode problem and

showed that, for any δ ∈ (0,1/2), there is an O(n2−2δ)-word solution that answers queries
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in O(nδ logn) time. Setting δ = 1/2 yields an O(n)-word data structure supporting range
mode in O(√n logn) time. They also presented a data structure using O(n2 log logn/ logn)
words, or O(n2 log logn) bits, to support queries in constant time. Chan et al. [55] further
provided a better linear word solution with O(

√
n/ logn) query time. They also proved a

conditional lower bound to show that, with current knowledge, either the query time must
be polynomial, or the construction time must be polynomially larger than n. Later, Greve
et al. [123] gave an (unconditional) lower bound in the cell probe model, showing that
any structure using S memory cells of w-bit words requires Ω( logn

log(Sw/n)) time to answer a
range mode query. On the other end of the spectrum, there has been work [203, 204] on
improving the constant-time query structure of Krizanc et al., and the best solution uses
O(n2 lg lgn/ lg2 n) words, or O(n2 lg lgn/ lgn) bits [204].

In dynamic settings, Chan et al. [55] provided a tradeoff among space cost, query
time and update time. This tradeoff implies two important results: using linear space
in words, range mode can be supported in O(n3/4 logn/ log logn) worst-case time while
updates can be performed in O(n3/4 log logn) amortized expected time. Alternatively, they
can use O(n4/3) words to improve the query and update efficiency to O(n2/3 logn/ log logn)
worst-case time and amortized expected time, respectively. They also proved a conditional
lower bound to show that, with current knowledge, either queries or updates must require
polynomial time. Very recently, El-Zein et al. [80] further improved these solutions by
designing an O(n)-word structure supporting both queries and updates in O(n2/3) time.

Bose et al. [37] were the first to study approximate range mode. They showed how
to provide constant-time support for 4-approximate mode, 3-approximate mode and 2-
approximate mode using data structures occupying O(n), O(n lg lgn) and O(n lgn) words,
respectively. For (1 + ε)-approximation, they designed an O(n/ε)-word solution that can
answer a query in O(lg lg1+ε n) = O(lg lgn + lg(1/ε)) time. Greve et al. [123] further
improved these results by using O(n/ε) words of space to support queries in O(lg(1/ε))
time.

Range Median and Selection. The study of range median also has a rich history. It
was also Krizanc et al. [167] who initially proposed this problem. There have been several
solutions with near-quadratic space and constant query time [167, 203, 204], the best of
which uses O((n lg lgn/ lgn)2) words [204]. For linear-space solutions, following a series
of earlier work [167, 105, 44, 45], Brodal et al. [44] first achieved an O(n)-word solution
that answers range median and selection queries in O(lgn/ lg lgn) time. Jørgensen and
Larsen [144] further improved the query time of range selection to O(lg lgn + lg k/ lg lgn),
where k is the specified query rank. They also proved that, under the cell probe model,
Ω(lg k/ lg lgn+1) time is necessary for any range selection data structure using O(n lgO(1) n)
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space. Chan and Wilkinson [58] were then the first who designed a linear word solution
with O(lg k/ lg lgn + 1) optimal query time for range selection. More recently, Grossi et
al. [124] proposed an encoding data structure occupying O(n lgκ) bits for any fixed positive
integer κ, using which a range selection query can be answered in O(lg k/ lg lgn + 1) time
for any k given in the query with 1 ≤ k ≤ κ. Gawrychowski and Nicholson [111] presented
a space-optimal encoding of range selection which uses even less space, and proved its
space cost is optimal within an o(n) additive term in bits, though no support for queries
is provided. All of the above results for range selection assume the selection rank k is
specified at query time.

In the dynamic case, Gfeller and Sanders [44] proposed a data structure that uses
O(n lgn) words of space to support range median in O(lg2 n) time and insertions and dele-
tions inO(lg2 n) amortized time. The structure of Brodal et al. [44] occupiesO(n lgn/ lg lgn)
words of space, answers queries in O((lgn/ lg lgn)2) worst-case time and supports inser-
tions and deletions in O((lgn/ lg lgn)2) amortized time. Later He et al. [131] improved
the space cost to O(n) words while providing the same support for queries and updates.
The work of Bose et al. [37] is the only work on α-approximate range median, for which
they proposed a data structure occupying O(n/α) words of space that answers queries in
constant time.

6.3 Approximate Range Mode
Before we proceed, we give a few preliminaries. We will at times refer to elements (of c1..n

or otherwise) as colors. This is because their data type has no significance in frequency
applications and thus the term color standardizes the data type. Furthermore, at times we
create indexing such as a value ri for when the mode in some range csi..ri exceeds a given
threshold. It is possible the mode never exceeds such a threshold. To avoid dealing with
such corner cases in the rest of this exposition, we make the assumption that our list of
elements c1..n is padded at the beginning and end with a sufficient number of one arbitrary
color.

We allow non-constant ε. However, in our upper bounds, we make the restriction ε ≤ 1,
to allow simplification in the runtime and space analyses.

Theorem 69. Any one-dimensional (1 + ε)-approximate range mode data structure re-
quires Ω(n/(1 + ε)) bits.

Proof. Using a simple proof we show that Ω(n/(1 + ε)) bits are required for any data
structure that answers one-dimensional approximate range mode queries. Here we allow
arbitrary ε.
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Given an approximation factor 1 + ε, divide the sequence S of size n into ⌊n/(2k)⌋ full
blocks each of size 2k, where k = ⌈1 + ε⌉ + 1, and, if n is not a multiple of 2k, a non-full
block of size n mod 2k. Denote by t1, . . . , tk+1 k+1 arbitrary, distinct colors. We say that S
satisfies property (∗) if for each full block b in S one of the following two conditions hold:

• either b consists of t1 repeated k times followed by t2, . . . , tk+1,

• or b consists of t2, . . . , tk+1 followed by t1 repeated k times.

Clearly, the number of sequences that satisfy (∗) is at least 2⌊n/(2k)⌋, since there exist
⌊n/(2k)⌋ full blocks in a sequence of size n and each of them can have one of two different
values. Moreover, for any two distinct sequences S1 and S2 satisfying (∗) differing at full
block b, there exists at least one approximate range mode query, namely the query that
asks for an approximate mode of b, that will return different values (either a value from
the first k position in the block or from the last k positions of the block). Thus, the
information theoretic lower bound for storing an approximate range mode data structure
is Ω(lg 2⌊n/(2k)⌋) = Ω(⌊n/(2k)⌋) = Ω(n) bits.

We now proceed with our new upper bound. Our data structure consists of two parts.
The first part answers low frequency queries ca..b with F (ca..b) ≤ ⌈1/ε⌉, and is exact. The
second part answers high frequency queries ca..b with F (ca..b) > ⌈1/ε⌉, and makes use of the
approximation factor.

Low Frequencies: O(n/ε)-Bits O(lg(1/ε)) Query Time. Similar to the data
structure of Greve et al. [123], for k = 0, . . . , ⌈1/ε⌉ let Qk be an increasing sequence of
size n such that Qk[i] is the largest integer j ≥ i satisfying F (ci..j) = k. Since Qk is an in-
creasing sequence whose largest element is n, we store it in 2n+O(n/ lg2 n) bits [198] while
still accessing its ith element in constant time1. The total space used is O(n/ε) bits. Given
a query range ca..b, F (ca..b) > k iff b > Qk[a]. Thus, using binary search, we can determine if
F (ca..b) < 1/ε and K = F (ca..b) in that case. If F (ca..b) < 1/ε we return index Q(K−1)[a]+ 1;
otherwise we query the high frequency structure. The total time is O(lg(1/ε)).

High Frequencies: O(n/ε)-Bits O(lg lgn+ lg(1/ε)) Query Time. We first present
an O(n/ε)-bit structure that answers high frequency (1 + ε)-approximate range mode
queries in O(lg lgn + lg(1/ε)) time. We start by developing a tool to binary search the
frequency of the mode, with the goal of locating a (1 + ε)-approximate mode.

1 We store Qk[1] and (Qk[i] −Qk[i − 1]) in unary with a 0 separator between each two consecutive
values in a 2n-bit vector ψ with rank and select structures. To access Qk[i] we count the number of 1s
before the ith 0 in ψ.
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Lemma 70. There exists a data structure using O(k ⋅ ε ⋅n/(1+ ε)k +n/ lg2 n) bits that can
find in constant time, for any query range ca..b, one of the following that holds:

1. F (ca..b) < (1 + ε)k/ε,

2. F (ca..b) > (1 + ε)k/ε, or

3. ((1 + ε)k−1/2)/ε < F (ca..b) < ((1 + ε)k+1/2)/ε.

In case 2, we find an element with frequency greater than (1 + ε)k/ε in range ca..b. In case
3, we find an element with frequency greater than ((1 + ε)k−1/2)/ε in range ca..b.

When this structure is present for all k in range 0, . . . , ⌊lg1+ε εn⌋, the above trichotomy
is sufficient to binary search for an approximate mode of frequency at least 1/ε. If we
ever land in case 3, the encoding gives an approximate mode, and otherwise, we find the
k satisfying (1+ ε)k/ε < F (ca..b) < (1+ ε)k+1/ε, which represents case 2 for value k and case
1 for value k + 1. Since case 2 provides an element with frequency greater than (1 + ε)k/ε,
this element is an approximate mode.

Proof. Let 1 + ∆ =
√

1 + ε and fj = (∆/ε) ⋅ (1 + ∆)j. For each integer i in [0, n/⌈f2k−1⌉]
let si = i ⋅ ⌈f2k−1⌉ + 1 and denote by ri the smallest value such that F (csi..ri) ≥ (1 +∆)2k/ε.
Notice that cri is the unique mode of csi..ri . Similarly, for each integer i in [0, n/⌈f2k⌉], let
s′i = i ⋅ ⌈f2k⌉ + 1 and denote by r′i the smallest value such that F (cs′i..r′i) ≥ (1 +∆)2k+1/ε.

Given a query range ca..b, we find the biggest indices si, s′j preceding or equal to a. We
proceed as follows.

1. If b < ri, then F (ca..b) ≤ F (csi..ri−1) < ((1 +∆)2k/ε) = ((1 + ε)k/ε).

2. If b ≥ r′j, then Fr′j(ca..b) > Fr′j(cs′j ..r′j) − f2k, since there are at most ⌈f2k⌉ − 1 < f2k

elements between s′j and a. Then:

Fr′j(ca..b) > Fr′j(cs′j ..r′j) − f2k ≥ ((1 +∆)2k+1/ε) − (∆/ε) ⋅ (1 +∆)2k = (1 +∆)2k/ε
= (1 + ε)k/ε.

3. Suppose b ≥ ri and b < r′j. Since there are at most ⌈f2k−1⌉−1 < f2k−1 elements between
si and a and since b ≥ ri, we have that

Fri(ca..b) > Fri(csi..ri) − f2k−1 ≥ ((1 +∆)2k/ε) − (∆/ε) ⋅ (1 +∆)2k−1 = ((1 +∆)2k−1)/ε
= ((1 + ε)k−1/2)/ε.

Finally, since b < r′j, then F (ca..b) ≤ F (cs′j ..r′j−1) < ((1 +∆)2k+1)/ε = ((1 + ε)k+1/2)/ε.
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To store the values {ri}, we construct a bit vector of length O(n) as follows. In the bit
vector, there are n 0s. For each ri, we insert a 1 bit after the rith 0 bit in the bit vector.
Thus ri is equal to the number of 0s before the ith 1 bit in the bit vector. A second
bit vector of length O(n) is used to encode the values {r′i} in a similar way. We then
represent these two bit vectors in the succinct data structure of Patrascu [198]. This data
structure provides constant time rank and select, which allow us to locate ri and r′j, and
thus determine whether case 1, 2, or 3 applies, in constant time.

For a bit vector of size n with m ones, the space cost can be made O(m lg(n/m) +
n/ lg2 n) bits [198]. For vector r, m lg(n/m) = O((n/f2k−1) lg f2k−1), and for vector r′,
m lg(n/m) = O((n/f2k) lg f2k). The cost is dominated by vector r. Let us first consider the
O(m lg(n/m)) term. We have

n/f2k−1 lg f2k−1 =
εn

∆(1 +∆)2k−1
lg((∆/ε) ⋅ (1 +∆)2k−1). (6.1)

Rationalizing the denominator, we can show 1
∆ = 1√

1+ε−1
= 1+

√
1+ε
ε and so 1

∆ = Θ(1
ε) and

∆/ε = O(1). Thus, with ε ≤ 1, we can bound (6.1) with O ( (k−1/2)n
(1+ε)k−1/2 lg(1 + ε)). Finally,

since we restrict ε ≤ 1, we can do a Taylor series expansion to give lg(1 + ε) = O(ε). Thus
our final space bound is O((n/f2k−1) lg f2k−1 + n/ lg2 n) = O(k ⋅ ε ⋅ n/(1 + ε)k + n/ lg2 n).

To make the above lemma useful, we must apply it to all k in range 0, . . . , ⌊lg1+ε εn⌋.
We first analyze the total space cost of all the O(k ⋅ε ⋅n/(1+ε)k) terms. Summing up these
terms, we have O (∑⌊lg1+ε n⌋

k=1 (k ⋅ ε ⋅ n/(1 + ε)k)) = O (n ⋅ ε∑∞
k=1(k/(1 + ε)k)) = O(n/ε) bits.

The other term comes out to O(lg1+ε(ε ⋅ n) ⋅ n/ lg2 n) ⊆ O ( n
lgn lg(1+ε)) bits. Again applying

Taylor series for 1/ lg(1+ ε) = O(1/ε) gives O(n/(ε lgn)) bits. Thus the total space cost is
O(n/ε) bits.

The time complexity of the binary search is different from a typical binary search. The
number of values of k in the entire range is O(lg1+ε n), so the complexity of the binary
search is O(lg(lg1+ε n)) = O(lg ( lgn

lg(1+ε))) = O(lg ( lgn
ε
)) = O(lg lgn + lg(1/ε)).

Lemma 71. There exists an O(n/ε)-bit data structure that supports one-dimensional
(1 + ε)-approximate range mode queries in O(lg lgn + lg(1/ε)) time.

High Frequencies: O(n/ε)-Bits O(lg(1/ε)) Query Time. The bottleneck of the
approach described in the previous section is the binary search on k. To speed up queries,
we store an additional data structure that uses O(n) bits but returns a 4-approximate
range mode.
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Lemma 72. There exists an O(n)-bit data structure that supports one-dimensional ap-
proximate range mode queries in constant time with approximation factor 4.

Proof. We assume n is a power of 2. We construct a network of fusion trees [98]. At the
top level, we store two fusion trees Fn/2,l and Fn/2,r. The tree Fn/2,l contains the values
e1, . . . , elgn, where ej is the largest index satisfying F (cej ..n/2) = 2j. Fn/2,r contains the
values e1, . . . , elgn, where ej is the smallest index satisfying F (cn/2..ej) = 2j. If a query
crosses the middle index n/2, we query Fn/2,l to get p1, the smallest value greater than
or equal to a, and we query Fk,r to get p2, the largest value less than or equal to b. We
return p1 if F (cp1..n/2) > F (cn/2..p2) and p2 otherwise. Clearly, p1 is a 2-approximate mode
for ca..n/2 and p2 is a 2-approximate mode for cn/2..b. The true mode has at least half its
occurrences in one of these regions, so the value we return is a 4-approximate mode for
ca..b.

If the query does not cross the middle, it falls entirely in one of the two sides. We may
therefore repeat our fusion tree scheme in a divide and conquer fashion, recursing on the
two halves. Eventually, there will be a level of the recursion that intersects the query.

To analyze the total space used, we use the recurrence S(n) = 2S(n/2)+O(lg2 n), which
solves to S(n) = O(n) bits.

To analyze the time complexity of the query, observe that the fusion trees on O(lgn)
elements with word size O(lgn) support the necessary predecessor/ successor queries in
constant time. However, we must know which fusion trees to query. This involves finding
the level of recursion in which the query range intersects the midpoint. This is equivalent
to the highest set bit in the XOR of a and b, which can be determined in constant time in
the word RAM model. With this information, we can do the necessary arithmetic to find
the appropriate fusion trees to query, and thus query takes constant time.

We now return to the (1+ε)-approximation. To answer a query ca..b, we first query the 4-
approximation structure of Lemma 72, which returns a corresponding frequency x. We now
know x ≤ F (ca, . . . , cb) ≤ 4x. We have thus shrunk the number of values of k from Lemma 70
that need be tested for the (1+ε)-approximation from ⌈lg1+ε n⌉ to ⌈lg1+ε(4x/x)⌉ = ⌈lg1+ε 4⌉.
Thus our binary search now takes time O(lg ( 2

lg(1+ε))) = O(lg(1/ε)).

Theorem 73. There exists an O(n/ε)-bit data structure that supports one-dimensional
approximate range mode queries in O(lg(1/ε)) time with approximation factor 1 + ε.
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6.4 Dynamic Approximate Range Mode
In this section we consider the dynamic variant of the approximate range mode problem.
We maintain our sequence ca..b under insertions and deletions, so that for an arbitrary
query range ca..b an approximate range mode can be found efficiently.

The high-level approach is as follows. Similar to Section 6.3, for each j ≤ lg1+ε n, our
goal is to maintain a set of intervals Ij such that the mode of a query range ca..b occurs
more than (1 + ε)j times if and only if ca..b contains an interval in Ij. Then, for all j and
each interval cl..r in Ij we maintain the points (l, r, j) in a data structure D that supports
the following range queries: given a query point (a, b), return the highest j such that a ≤ l
and r ≤ b for at least one point (l, r, j) in D.

However, unlike the sets of intervals maintained in Section 6.3, our construction in this
section satisfies the property that a single update affects only a small number of intervals
in the sets Ij for all j. We now proceed with the technical argument.

Let Sx denote the set of positions of the element x in the sequence c1..n. We will denote
by Sx[i] the position of the ith occurrence of element x. Let Ix(l, r) denote the interval
cSx[l]..Sx[r].

Now let δ = 1 + ε′ = (1 + ε)1/3 and fix x. There are f = Fx(c1..n) occurrences of element
x in the full range c1..n. We will maintain a subset of the (f

2
) possible intervals Ix(l, r) in

sets Ij,x, 1 ≤ j ≤ ⌈lgδ n⌉. We will not have need for nested intervals in Ij,x; therefore, we
can number each interval of Ij,x from left to right with sk the start of interval k and ek the
end of interval k, satisfying sk ≤ sk+1, ek ≤ ek+1. We maintain the following two invariants
on the intervals of Ij,x: (1) δj ≤ ek − sk ≤ δj+1, and (2) (ε′/2)δj ≤ sk+1 − sk ≤ ε′δj, and
the number of positions of Sx not covered by an interval of Ij,x at either end is at most
(ε′/2)δj (so s1 ≤ (ε′/2)δj and f −r∣Ij,x∣ ≤ (ε′/2)δj). From our invariants we get the following
proposition.

Proposition 74. An interval Ix(l, r) intersects at most 2(r−l+1)/(ε′δj)+O(1/ε′) intervals
of Ij,x.

Proof. By Invariant (2), we have a gap size of between (ε′/2)δj and ε′δj elements between
consecutive starting points of intervals of Ij,x. Since each interval has size at most δj+1,
the total number of intervals intersecting Ix(l, r) is at most 2(r − l + 1 + 2δj+1)/(ε′δj).

For each interval Ix(sk, ek) of Ij,x, let pot(Ix(sk, ek)) = ek − sk +1 denote the number of
elements of Sx (and thus positions in the original sequence c1..n) that fall between sk and
ek. When we insert or delete an element x, by Proposition 74, we must update the pot

values of O(1/ε′) intervals of Ij,x. Across all j, 1 ≤ j ≤ ⌈logδ n⌉, O((1/ε′) lgδ n) intervals are
affected.
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During the updates, each affected pot(Ix(sk, ek)) value is incremented or decremented
by one. If, for an interval Ix(sk, ek) in Ij,x, Invariant (1) is violated by the update, then we
rearrange the intervals in the neighborhood of Ix(sk, ek) as follows. Consider all intervals
of Ij,x that intersect with Ix(sk, ek+1). By Proposition 74, there are O(1/ε′) such intervals.
We remove said intervals and create new intervals in their place with exactly ⌈(1+ ε′/2)δj⌉
positions of x that fall in each interval. Furthermore, we space them so that Invariant (2)
holds when the new intervals are inserted into Ij,x.

To build these intervals, we must be able to efficiently search for elements by rank
in Sx. As this will not dominate the update cost, we can use a typical order statistic
tree, with O(lg f) = O(lgn) query and update time. We may construct the new intervals
satisfying invariants (1) and (2) with a constant number of queries on Sx per interval, thus
in O((1/ε′) lgn) time overall.

We can analyze the total cost of rebuilds as follows. On each update, we affect O(1/ε′)
intervals at each level. However, the affect on pot is the same for each interval, and when
we rebuild, we rebuild a superset of the intervals affected on update. It follows that the
total amortized cost of rebuilds is ∑⌈logδ n⌉

j=1 (1/δj) ⋅O((1/ε′) lgn) = O((lgn)/ε′2) per update.
Further, in each update we must update Sx and update the pot values. These take

time O(lgn) and O((1/ε′) lgδ n) = O(lgn/ε′2), respectively. So far we pay O(lgn/ε′2) per
update, but we have yet to describe the data structure that holds each Ij,x, which will also
need to be updated during rebuilds.

Consider each interval Ix(sk, ek) of Ij,x as a point (sk, ek, j). We store each interval of
Ij,x, across all 1 ≤ j ≤ ⌈lgδ n⌉ and all x, in a data structure D that supports the following
range queries: given a query point (a, b), return the highest j such that a ≤ l and r ≤ b for
at least one point (l, r, j) in D. Associated with each point, we keep the element x from
which it originated.

We first must consider the number of intervals (and thus points) stored in D. As before,
we assume element x occurs f = Fx(c1..n) times in c1..n. Then ∣Ij,x∣ = O(f/⌈ε′δj⌉). Across all
levels, we can bound the total number of intervals at O(f lgδ n) = O(f lgn/ε′) or O(f/ε′2).
Accounting for all x, the number of intervals in D will be O(m) = O(min(n lgn/ε′, n/ε′2)).

Lemma 75. Data structure D can be stored in O(n lgn) bits, where n is the number of
elements in D. Queries and updates can be supported in O(lgn/ lg lgn) time.

Proof. Let P denote the set of points to be stored in our data structure. Here we use ε > 0
independently of the rest of the section. We start by considering the special case when
the second coordinate is bounded by lgε n, i.e., r ≤ lgε n for all (l, r, j) ∈ P . In this case it
is sufficient to store lgn points for every possible value of b: let maxr,j denote the biggest
first coordinate of a point (l′, r′, j′) in P with r′ = r, j′ = j (maxr,j = max{ l′ ∣ (l′, r′, j′) ∈
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P and r′ = r, j′ = j}. The answer to a query (a, b) is the largest j that satisfies a ≤ maxr,j
for some r ≤ b. We keep all values maxr,j such that P contains at least one point (l, r, j)
for some l, and store them in increasing order. We group them in blocks of size Θ(lg1−ε n)
and we keep a global lookup table of size o(n) bits that allows answering queries within
any possible block.

Also, in a local lookup table of size O(lg3ε n) bits we store for each block and every
possible value of r the index of the block preceding it which maximizes the value of j given
r. We also store a fusion tree on the values maxr,j so that we can compute the rank of
a within these values in constant time. Given a query, we compute in constant time the
block which the predecessor of a belongs to and use table lookup on that block and one
other block preceding it to get the answer. Updates also take constant time since the size
of individual blocks and the local lookup table fit in a single word.

A general query can be reduced to the above described special case by using a range
tree with node degree lgε n that splits the points on the value of their second coordinate.
Although every point is stored in O(lgn/ lg lgn) nodes, our data structure uses linear space.
Let P (u) denote the set of points stored in a node u. We replace the second coordinate of
each point p ∈ P (u) with the index i of the child node ui such that p ∈ P (ui). We keep the
above described special case data structure in every node P (u), but we do not store the set
P (u) itself. A query interval can be fully covered by O(lgn/ lg lgn) tree nodes. We query
the data structure in each one of them and return the maximum value j in O(lgn/ lg lgn)
time. Similarly, an update affects the special case data structure in O(lgn/ lg lgn) nodes
and requires O(lgn/ lg lgn) time.

The total space usage is O(n logn) bits because we spend O(min(log2+ε n, ∣P (u)∣ lgn)
bits in each node u of the range tree. To prove this bound, we classify nodes into low and
high nodes. Low nodes are the nodes in the lowest (1 + 2/ε) levels of the tree and the rest
of the nodes are high nodes. We also store the set of points P (u) in every low node u.
Thus we spend O(∣P (u)∣ lgn) bits in every low node, so the total space consumed by all
low nodes is O((1/ε)n lgn) bits. We spend O(lg2+ε n) = O(∣P (u)∣) bits in every high node
because ∣P (u)∣ ≥ lg2+ε n. Since the total number of points in all P (u) is O(n(lgn/ lg lgn)),
the total space consumed by high nodes is O(n(lgn/ lg lgn)) bits.

Now suppose we are given a query range ca..b. We find the largest j such that some
interval from Ij,x for some x is contained in ca..b. Using data structure D from Lemma 75,
we can compute the index j in O(lgn/ lg lgn) time. We return the element x associated
with j.

Lemma 76. The element x returned is a (1 + ε)-approximate mode of query range ca..b.

Proof. If ca..b contains an interval from Ij,x, then x occurs at least δj times in ca..b. On
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the other hand, we can show that if some y occurs δj+3 times in ca..b, then ca..b contains
an interval from Ij+1,y. Recall δj+3 = (1 + ε′)δj+2. Each interval of Ij+1,y has size at most
δj+2 and there is a gap of at most ε′δj elements of y between the start of every interval in
Ij+1,y. Then since ε′δj+1 + δj+2 < (1+ε′)δj+2, it must be that an interval of Ij+1,y falls in the
query range ca..b. We therefore know δj ≤ F (ca..b) < δj+3 = (1 + ε)δj. It follows that x is a
(1 + ε)-approximate mode of query range ca..b.

This gives us the main theorem for the section.

Theorem 77. There exists an O(m lgm)-bit data structure, wherem = min(n lgn/ε, n/ε2)
that answers (1 + ε)-approximate range mode queries in O(lgm/ lg lgm) time. Insertions
and deletions are supported in O(lgn/ε2) time.

Proof. We have (1 + ε′)3 = (1 + ε) and (1 + ε)3 = ε3 + 3ε2 + 3ε + 1. The smallest exponent
dominates O(1/ε′) since ε ≤ 1 and thus ε′ < ε ≤ 1. Thus we have 1/ε′ = O(1/ε). As
previously stated, the number of intervals in D is O(m), where m = min(n lgn/ε, n/ε2).
The space bound for D is thus O(m lgm) = Ω(n lgn) bits, which dominates the total space
cost. The query time is O(lgm/ lg lgm).

The update cost has four components: Updating D, updating Sα, and updating pot

values for all affected intervals. As previously mentioned, the latter three are dominated
by O(lgn/ε′2) = O(lgn/ε2). Via Lemma 75, the cost of updating D is O(lgm/ lg lgm).
Since m is no more than n/ε2, lgm/ lg lgm is dominated by O(lgn/ε2). In total, the cost
of updates is O(lgn/ε2).

We can use our dynamic data structure to obtain a result for approximate range mode
queries on two-dimensional points. Our data structure can find approximate mode in the
case when the query range is bounded on three sides.

Corollary 78. There exists a data structure that supports three-sided two-dimensional
approximate range mode queries in O(logm) time and uses O(m logm) words of logn bits,
where m = min(n lgn/ε, n/ε2).

Proof. Using the technique introduced by Dietz in [70], we can transform a data structure
that supports updates in u(n) time and queries in q(n) time into an offline partially
persistent data structure that answers queries in O(q(n) ⋅ log logn) time and uses O(n ⋅
u(n)) words of space. Using sweep line technique, we can transform an offline partially
persistent data structure for one-dimensional queries into a static data structure for three-
sided queries with the same time and space bounds.
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6.5 Approximate Range Median and Range Selection
In this section we present solutions to approximate range selection queries. As discussed
previously, a range selection query takes two indices a, b of a sequence c1, . . . , cn and must
return the index of an element x whose rank in ca..b is between k − α(b − a + 1) and k +
α(b − a + 1). We study two variants. In the first variant, the rank k is supplied prior to
construction of the data structure. In the second variant, we allow k to be specified at
query time. Here rank is defined so the ith smallest element in the range has rank i. We
also support a specific k depending on the size of the range, i.e. f(b−a+1) = ⌈(b−a+1)/2⌉,
which is the range median problem. We make the restrictions f(x) ≤ f(x + 1) ≤ f(x) + 1
and 1 ≤ f(x) ≤ x.

Theorem 79. Any one-dimensional approximate range median data structure requires
Ω(n) bits.

Proof. Assume n is even. Divide the sequence S of size n to n/2 blocks each of size 2. We
say that S satisfies property (∗) if for each block b in S one of the following two conditions
hold:

• either b consists of {1,2},

• or b consists of {2,1}.
Clearly, the number of sequences that satisfy (∗) is 2(n/2) since there exists n/2 blocks in
a sequence of size n and each block can have one of two different values. Moreover for
any two distinct sequences S1 and S2 satisfying (∗) differing at block b, the approximate
range selection query must be exact on block b, and therefore must return different values.
Thus, the information theoretic lower bound for storing an approximate range median data
structure is Ω(lg 2(n/2)) = Ω(n/2) = Ω(n) bits.

Fixed Rank f(b − a + 1) = k Selection. We first address the range selection variant
with a fixed rank f(b− a+ 1) = k. We use a similar approach to the one in Lemma 72. We
again assume n is a power of 2. At the top level, we store valuesmn/2,i,j (1 ≤ i, j ≤ ⌈lg1+α n⌉).
Let ri = n/2 − (1 + α)i and sj = n/2 + 1 + (1 + α)j. Then mn/2,i,j is the element of rank
f(sj − ri + 1) in the range c⌊ri⌋..⌈sj⌉. We then build the structure recursively on the left and
right halves of the full range.

Given a query range ca..b, we find the appropriate element mt,i,j where a ≤ t, t + 1 ≤ b,
and i and j are largest possible satisfying a ≤ ri and sj ≤ b. We return mt,i,j.

Lemma 80. The above data structure returns an α-approximate fixed-rank k element of
any query range ca..b.
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Proof. Let x = ri − a and y = b − sj. Consider the size of x. If we let z = (1 + α)i, then
x + z < (1 + α)z. It follows x < αz. Since z ≤ (t − a + 1), and applying similarly for y, we
can show x < α(t − a + 1) and y < α(b − t). The elements in the ranges represented by x
and y shift the true rank k element of ca..b at most x+ y < α(b− a+ 1) ranks from mt,i,j. It
follows that mt,i,j is an α-approximate rank k element for range sa, . . . , sb.

As for Theorem 72, to find the level to query, we find the highest set bit of a XOR b,
then find the appropriate index mt,i,j via arithmetic. In total, the query takes constant
time.

We now analyze the space required. At the top level, we use O(lg2
1+α(n)⋅lgn) bits, which

is equal to O( lg3 n

lg2(1+α)) = O(lg3 n/α2) bits. Therefore our recurrence is S(n) = 2S(n/2) +
O(lg3 n/α2). The recursion tree is leaf-heavy, with total space amounting to O(n/α2) bits.

Theorem 81. There exists an O(n/α2)-bit data structure that supports one-dimensional
α-approximate fixed-rank f(b − a + 1) = k selection queries in constant time.

Online Rank k Selection. Our data structure from the previous section can be
adapted to support queries that specify the rank k at query time. We again assume n is a
power of 2. Let δ = 1+α/2. At the top level we now store values mn/2,i,j,l (1 ≤ i, j,≤ ⌈lgδ n⌉,
0 ≤ l ≤ ⌊1/α⌋). Again, we let ri = n/2− δi and sj = n/2+ 1+ δj. However, this time, mn/2,i,j,l
represents the element of rank ql = lα ⋅ (sj − ri + 1)+ 1 in cri..sj . As ql may be fractional, for
simplicity we just store both rank ⌊ql⌋ and ⌈ql⌉ elements. We build this structure recursively
on both halves of the full range.

Given a query sa..b, we again find the appropriate element mt,i,j,l where a ≤ t, t + 1 ≤ b,
i and j are largest possible satisfying a ≤ ri and sj ≤ b, and l is chosen so ql is as close to k
as possible. We return mt,i,j,l.

Lemma 82. The above data structure returns an α-approximate rank k element of any
query range ca..b and specified rank k.

Proof. Again let x = ri − a and y = b − sj. For the same reasons as in the proof of Lemma
80, we have x + y < α(b − a + 1)/2.

There are no more than α ⋅ (sj − ri + 1) ≤ α ⋅ (b − a + 1) ranks between each consecutive
ql and ql+1. Thus our chosen ql satisfies ∣ql − k∣ < ⌊α(b − a + 1)/2⌋. It follows that mt,i,j,l is
no more than α ⋅ (b − a + 1) ranks away from the true rank k element in range ca..b.

The query time follows as in the previous section. However, we must account for the
additional space usage. Our recurrence is now T (n) = 2T (n/2) + O(lg3 n/α3), from the
additional 1/α factor in the space cost at each level. This totals to O(n/α3) bits.
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Theorem 83. There exists an O(n/α3)-bit data structure that supports one dimensional
α-approximate online rank k selection queries in constant time.
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Part III

Graph and Dynamic Graph Algorithms
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Chapter 7

Offline Dynamic Higher Connectivity

7.1 Introduction
Dynamic graph data structures seek to answer queries on a graph as it undergoes edge
insertions and deletions. Perhaps the simplest and most fundamental query to consider is
connectivity. A connectivity query asks for the existence of a path connecting two vertices
u and v in the current graph. As the insertion or deletion of a single edge may have large
consequences to connectivity across the entire graph, constructing an efficient dynamic
data structure to answer connectivity queries has been a challenge to the data structure
community. A number of solutions have been developed, achieving a wide variety of runtime
tradeoffs in a number of different models [84, 85, 86, 148, 137, 138, 141, 149, 172, 226, 241]

The models typically addressed are online: each query must be answered before the
next query or update is given. A less demanding variant is the offline setting, where the
entire sequence of updates and queries is provided as input to the algorithm. While an
online data structure is more general, there are many scenarios in which the entire sequence
of operations is known in advance. This is often the case when a data structure is used in
a subroutine of an algorithm [170, 40], one specific example being the use of dynamic trees
in the near-linear time minimum cut algorithm of Karger [153].

In exchange for the loss of flexibility, one can hope to obtain faster and simpler algo-
rithms in the offline setting. This has been shown to be the case in the dynamic minimum
spanning tree problem. While an online fully-dynamic minimum spanning tree data struc-
ture requires about O(log4 n) time per update [139], the offline algorithm of Eppstein
requires only O(logn) time per update [84].

In this chapter, we show similar, but stronger, performance gains for higher versions
of connectivity. In particular, we consider the problems of 2,3-edge/vertex connectivity
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on a fully-dynamic undirected graph. An extension of connectivity, c-edge connectivity
asks for the existence of c edge-disjoint paths between two vertices u and v in the current
graph. Vertex connectivity requires vertex-disjoint paths instead of edge-disjoint paths.
Current online fully-dynamic 2-edge/vertex connectivity data structures require update
time Õ(log2 n)1 [138] and Õ(log3 n)2 [226], respectively, and current online fully-dynamic
3-edge/vertex connectivity data structures require update time O(n2/3) and O(n), respec-
tively [85]. In contrast, our offline algorithms for 2,3-edge/vertex connectivity require only
O(logn) time per operation. As the lower bound on dynamic connectivity [197], as well as
most lower bounds in general [3, 2, 1, 65], also apply in the offline model, our algorithms are
optimal up to a constant factor. Our results further show that any lower bound attempt-
ing to show hardness stronger than Ω(logn) time per operation for online fully-dynamic
2,3-edge/vertex connectivity must make use of the online model.

As a straightforward application of our work, one can consider the use of our algorithms
when data regarding a dynamic network is collected, but not analyzed, until a later point
in time. For example, to diagnose an issue of network latency across key routing hubs, or
determine viability of a dynamically-changing network of roads, our algorithms can answer
a batch of queries in time O(t logn), where t is the total number of updates and queries.
Since online fully-dynamic algorithms for higher versions of connectivity are significantly
slower, namely, O(n2/3) and O(n) time update for 3-edge and 3-vertex connectivity, re-
spectively, our offline data structure makes these computations practical for large data sets
when they would otherwise be prohibitively expensive.

Related to our work are papers by Łącki and Sankowski [172] and Karczmarz and
Łącki [149], which also apply to the above applications but for lower versions of connectivity.
Their work considers a fixed sequence of graph updates, given in advance, and is then able
to answer connectivity queries regarding intervals of this sequence, online. This is more
general than the model we consider because the queries need not be supplied in advance
and data regarding an interval of time is richer than information from a specific point in
time. For connectivity and 2-edge connectivity, Karczmarz and Łącki achieve O(logn) time
per operation [149]. Both 2-vertex connectivity and 3-edge/vertex connectivity queries are
not supported.

In competitive programming, the idea of using divide and conquer as an offline algo-
rithm for connectivity is known. Several contest problems3 have appeared that are solved

1The Õ(⋅) notation hides log logn factors.
2This complexity is claimed in Thorup’s STOC 2000 [226] result. As noted by Huang et al. [141], the

paper provides few details, deferring to a journal version that has since not appeared. The best complexity
for online fully-dynamic biconnectivity prior to this claim was O(log5 n) by Holm and Thorup [137].

3 See https://codeforces.com/blog/entry/15296 and
https://codeforces.com/gym/100551/problem/A, for example.
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with similar techniques to Eppstein’s minimum spanning tree algorithm [84], the approach
we adopt here. The master’s thesis of Sergey Kopeliovich, a member of the competitive
programming community, describes such an offline algorithm for fully-dynamic 2-edge con-
nectivity, also achieving about O(logn) time per operation [163]. Unfortunately, the thesis
only appears in Russian, but we speculate that the ideas used are similar.

The techniques developed in this chapter may be of independent interest. Our work
has close connections with recent developments in vertex sparsification, particularly vertex
sparsification-based dynamic graph data structures [4, 76, 118, 119, 75, 86, 120, 166, 14,
89, 88]. In particular, the equivalent graphs at the core of our algorithms are akin to vertex
sparsifiers, with the main difference that 2- and 3-connectivity require preserving far less
information than the more general definitions of vertex sparsifiers [118, 166]. A promising
step in this direction is very recent work of Goranci et al. [120], which suggests the notion
of a local sparsifier. This is a generalization of the sparsifier that we consider here, and
leads to efficient incremental algorithms in the online setting.

Indeed, offline algorithms haven proven useful for the development of online counter-
parts in the past. One such example is recent development in the maintenance of dynamic
effective resistance. Recent work in fully-dynamic data structures for maintaining effective
resistances online [75] relied heavily upon ideas from earlier data structures for maintaining
effective resistances in offline [76, 171] or offline-online hybrid [76, 170] settings.

This work was first published online in the open access journal arXiv [202] and has
recently been extended to offline 4- and 5-edge connectivity [179]. This new work achieves
about O(√n) time complexity per operation.

The rest of this chapter will be dedicated to proving the following theorem:

Theorem 84. Given a sequence of t updates/queries on a graph of the form:

• Insert edge (u, v),

• Delete edge (u, v),

• Query if a pair of vertices u and v are 2-edge connected/3-edge connected/bi-connected/tri-
connected in the current graph,

there exists an algorithm that answers all queries in O(t logn) time.

For simplicity, we will assume the graph is empty at the start and end of the sequence,
but the results discussed are easily modified to start with an initial graph G, at the cost
of an additive O(m) term in the running time, where m is the number of edges of G.
Further, we assume a fixed vertex set of size n. Any update sequence with arbitrary vertex
endpoints can be modified to one on a fixed set of vertices, where the size of the fixed set
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is equal to the largest number of non-isolated vertices in any graph achieved in the given
update sequence. Finally, we consider the graph G to be a multigraph, since at times
during our constructions and definitions, we will need to work with multigraphs.

The chapter is organized as follows. We describe our offline framework for reducing
graphs to smaller equivalents in Section 7.2. We show how simple techniques can be used
to create such equivalents for 2-edge connectivity and bi-connectivity in Section 7.3. In
Section 7.4, we extend these constructions to 3-edge connectivity. Our most technical sec-
tion is Section 7.5, where constructing equivalent graphs for 3-vertex connectivity requires
careful manipulation of SPQR trees.

7.2 Offline Framework
The main idea of our offline framework is to perform divide and conquer on the input se-
quence, similar to what is done in Eppstein’s offline minimum spanning tree algorithm [84].
Consider the full sequence of updates and queries x1, . . . , xt, where each xi is either an edge
insertion, edge deletion, or query. Call each xi an event.

Assume each inserted edge has a unique identity. Then for each inserted edge e, we
may associate an interval [I(e),D(e)], indicating that edge e was inserted at time I(e)
and removed at time D(e). Plotting time along the x-axis and edges on the y-axis as in
Figure 7.1 gives a convenient way to view the sequence of events.

e4

e3

e2

e1

I(e1) I(e2) Q I(e3) D(e2) Q I(e4)D(e3) Q D(e4)D(e1)

1 2 3 4 5 6 7 8 9 10 11

Figure 7.1: A timeline diagram of four edge insertions(I)/deletions(D) and three queries(Q),
with time on the x-axis and edges on the y-axis.

Fix some subinterval [l, r] of the sequence of events. Let us classify all edges present
at any point of time in the sequence xl, . . . , xr as one of two types.

1. Edges present throughout the duration (ie ≤ l ≤ r ≤ de), we call permanent edges.
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2. Edges affected by an event in this range (one or both of I(e),D(e) is in (l, r)), we
call non-permanent edges.

While there may be a large number of permanent edges, the number of non-permanent
edges is limited by the number of time steps, r − l + 1. Therefore, the graph can be viewed
as a large static graph on which a smaller number of events take place.

Our goal will be to reduce this graph of permanent edges to one whose size is a small
function of the number of events in the subinterval. If we may do so without affecting the
answers to the queries, we can recursively apply the technique to achieve an efficient divide
and conquer algorithm for the original dynamic c-connectivity sequence.

We will work in the dual-view, considering cuts instead of edge-disjoint or vertex-disjoint
paths. Two vertices u and v are c-edge connected if there does not exist a cut of c−1 edges
separating them; further, u and v are c-vertex connected if there does not exist a cut of
c − 1 vertices that separates them.

We need the following definition.

Definition 85. Given a graph G = (VG,EG) with vertex subset W ⊆ VG and a graph
H = (VH ,EH) with W ⊆ VH , we say that H and G are c-edge equivalent if, for any
partition (A,B) of W , the size of a minimum cut separating A and B is the same in G
and H whenever either of these sizes is less than c. Similarly, we say H and G are c-vertex
equivalent if, for any partition (A,B,C) of W with ∣C ∣ < c, the size of a minimum vertex
cut D separating A and B such that C ⊆ D and D ∩A = ∅, D ∩B = ∅, is the same in G
and H whenever either of these sizes is less than c.

This gives the following.

Lemma 86. Suppose G = (VG,EG) and H = (VH ,EH) are c-edge/c-vertex equivalent
on vertex set W . Let EW denote any set of edges between vertices of W . Then H ′ =
(VH ,EH ∪EW )4 and G′ = (VG,EG ∪EW ) are c-edge/c-vertex equivalent.

Proof. We first show c-edge equivalence. Let (A,B) be any partition of W and consider
the minimum cuts separating A and B in G′ and H ′. Since the edges in EW are between
vertices of W , they must cross the separation (A,B) in the same way. Therefore, if the
minimum cut separating A and B had size less than c in either G or H, the minimum
cuts separating A and B will have equivalent size in G′ and H ′. Further, if the minimum
cuts separating A and B had size larger or equal to c in both G and H, the minimum cuts
separating A and B will also have size larger or equal to c in G′ and H ′, since we only add
edges to G′ and H ′. Thus G′ and H ′ are c-edge equivalent.

4We take ∪ here to be in the multigraph sense; an edge uv ∈ EW is added regardless if there is already
a uv edge in EH or EG
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We now consider c-vertex equivalence. Consider a partition (A,B,C) of W . As with
edge connectivity, if no vertex subset D exists satisfying the conditions of Definition 85, the
introduction of additional edges between any vertices ofW will not change the existence of
such a set D in G′ or H ′. Furthermore, if an edge of EW connects a vertex of A to a vertex
of B, no vertex cut separates A and B in G′ and H ′. Now suppose none of these cases is
true, and there exists a vertex set D satisfying the conditions of Definition 85 such that the
removal of D disconnects A and B in G and H and further that no edge of EW connects
a vertex of A to a vertex of B. Then the removal of vertex set D still disconnects A and
B in G′ and H ′. Thus c-vertex equivalence of G′ and H ′ follows from c-vertex equivalence
of G and H.

Now consider the graph G of permanent edges for the subinterval xl, . . . , xr of events.
Let W be the set of vertices involved in any event in the subinterval (that is, W is the
set of endpoints of all non-permanent edges in the subinterval, as well as vertices involved
in a query). We will refer to these vertices as active vertices, and all other vertices of G
not in W as inactive vertices. Lemma 86 says that if we reduce G to a c-edge/ c-vertex
equivalent graph H on set W , the result of all queries in xl, . . . , xr on H will be the same
as on G. This is because all cuts in H and G that affect the queries (therefore of size less
than c) are of equivalent size, even after the addition of non-permanent edges in H and G.

This idea can lead to a divide and conquer algorithm if we can produce such equivalent
graphs H of small size efficiently. Specifically:

Lemma 87. Given a graph G with m edges and vertex setW of size k, if there is an O(m)
time algorithm that produces a graph H of size O(k) that is c-edge/c-vertex equivalent
to G on W , then there is an algorithm that can answer all c-edge/c-vertex connectivity
queries in a sequence of events x1, . . . , xt in O(t logn) time.

Proof. We perform divide and conquer on the sequence of events. We take the sequence
of events x1, . . . , xt and divide it in half. Over each half, we will take the graph of perma-
nent edges, which we denote G, and reduce it to a c-edge/ c-vertex equivalent graph H.
We repeat the scheme recursively. As the subintervals get smaller, non-permanent edges
become permanent and are absorbed by the production of equivalent graphs. Eventually,
we reduce to subintervals with a constant number of events, which can be answered by any
algorithm of our choice on a graph of constant size.

Consider the sizes of the graphs in each step of recursion. The graph G is the graph
produced in the previous level plus the edges that became permanent in this interval. The
graph produced at the previous level has size linear in the number of events at the current
level, and since we reduce the number of events by a factor 2 in each step of recursion,
the number of edges that become permanent is also linear. It follows that the divide and
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conquer satisfies the recurrence T (t) = 2T (t/2)+O(t), which solves to T (t) = O(t log t). If
t is polynomially-bounded by n, T (t) = O(t logn). If not, we may first break the sequence
of events x1, . . . xt into blocks of size, say, n2. Since the size of the graph G cannot be more
than O(n2) in any subinterval, we can therefore handle each block separately and answer
all queries in O(t logn) time. This proves the lemma.

The remainder of the chapter will show the construction of 2-edge, 2-vertex, 3-edge,
and 3-vertex equivalent graphs.

7.3 Equivalent Graphs for 2-Edge Connectivity and Bi-
connectivity

We now show offline algorithms for dynamic 2-edge connectivity and bi-connectivity by
constructing 2-edge and 2-vertex equivalents needed by Lemma 87. These two properties
ask for the existence of a single edge/vertex whose removal separates query vertices u and
v. Since these cuts can affect at most one connected component, it suffices to handle each
component separately.

The underlying structure for 2-edge connectivity and bi-connectivity is tree-like. This
is perhaps more evident for 2-edge connectivity, where vertices on the same cycle belong
to the same 2-edge connected component. We will first describe the reductions that we
will make to this tree in Section 7.3.1, and adapt them to bi-connectivity in Section 7.3.2.

At times we will make use of the term “equivalent cut". By this we mean that a cut C ′

is equivalent to C if it has the same size and separates the vertices of W in the same way.

7.3.1 2-Edge Connectivity

Using depth-first search [140], we can identify all cut-edges in the graph and the 2-edge
connected components that they partition the graph into. The case of edge cuts is slightly
simpler conceptually, since we can combine vertices without introducing new cuts. Specif-
ically, we show that each 2-edge connected component can be shrunk to single vertex.

Lemma 88. Let S be a 2-edge connected component in G. Then contracting all vertices
in S to a single vertex s in H5, and endpoints of edges correspondingly, creates a 2-edge
equivalent graph.

5Here we slightly abuse our requirement W ⊆ VH , where VH are the vertices of H. A map of W onto
VH that preserves the cuts needed by c-edge/c-vertex equivalence suffices.
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Proof. The only cuts that we need to consider are ones that remove cut edges in G or H.
Since we only contracted vertices in a component, there is a one-to-one mapping of these
edges from G to H. Since S is 2-edge connected, all vertices in it will be on the same side
of one of these cuts. Furthermore, removing the same edge in H leads to a cut with s
instead. Therefore, all active vertices in S are mapped to s, and are therefore on the same
side of the cut.

This allows us to reduce G to a tree H, but the size of this tree can be much larger than
k. Therefore we need to prune the tree by removing inactive leaves and length 2 paths
whose middle vertex is inactive.

Lemma 89. If G is a tree, the following two operations lead to 2-edge equivalent graphs
H.

• Removing an inactive leaf.

• Removing an inactive vertex with degree 2 and adding an edge between its two
neighbors.

Proof. In the first case, the only cut in G that no longer exist in H is the one that removes
the cut edge connecting the leaf with its unique neighbor. However, this places all active
vertices in one component and thus does not separate W and need not be represented in
H.

In the second case, if a cut removes either of the edges incident to the degree 2 vertex,
removing the new edge creates an equivalent cut since the middle vertex is inactive. Also,
for a cut that removes the new edge in H, removing either of the two original edges in G
leads to an equivalent cut.

This allows us to bound the size of the tree by the number of active vertices, and
therefore finish the construction.

Lemma 90. Given a graph G with m edges and k active vertices W , a 2-edge equivalent
of G of size O(k), H, can be constructed in O(m) time.

Proof. We can find all the cut edges and 2-edge connected components in O(m) time using
depth-first search [140], and reduce the resulting structure to a tree H using Lemma 88.
On H, we repeatedly apply Lemma 89 to obtain H ′.

In H ′, all leaves are active, and any inactive internal vertex has degree at least 3.
Therefore the number of such vertices can be bounded by O(k), giving a total size of
O(k).
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7.3.2 Bi-connectivity

All cut-vertices (articulation points) can also be identified using DFS, leading to a structure
known as the block-tree. However, several modifications are needed to adapt the ideas
from Section 7.3.1. The main difference is that we can no longer replace each bi-connected
component with a single vertex in H, since cutting such vertices corresponds to cutting a
much larger set in G. Instead, we will need to replace the bi-connected components with
simpler bi-connected graphs such as cycles.

Lemma 91. Replacing a bi-connected component with a cycle containing all its cut-
vertices and active vertices gives a 2-vertex equivalent graph.

Proof. As this mapping maintains the bi-connectivity of the component, it does not intro-
duce any new cut-vertices. Therefore, G and H have the same set of cut vertices and the
same block-tree structure. Note that the actual order the active vertices appear in does not
matter, since they will never be separated. The claim follows similarly to Lemma 88.

The block-tree also needs to be shrunk in a similar manner. Note that the fact that
blocks are connected by shared vertices along with Lemma 91 implies the removal of inactive
leaves. Any leaf component with no active vertices aside from its cut vertex can be reduced
to the cut vertex, and therefore be removed. The following is an equivalent of the degree
two removal part of Lemma 89.

Lemma 92. Two bi-connected components C1 and C2 with no active vertices that share
cut vertex w and are only incident to one other cut vertex each, u and v respectively, can
be replaced by an edge connecting u and v to create a 2-vertex equivalent graph.

Proof. As we have removed only w, any cut vertex in H is also a cut vertex in G. As
C1 and C2 contain no active vertices, this cut would induce the same partition of active
vertices.

For the cut given by removing w in G, removing u in H gives the same cut since C1

has no active vertices (which in turn implies that u is not active). Note that the removal
of u may break the graph into more pieces, but our definition of cuts allows us to place
these pieces on two sides of the cut arbitrarily.

Note that Lemma 91 may need to be applied iteratively with Lemma 92 since some of
the cut vertices may no longer be cut vertices due to the removal of components attached
to them.

Lemma 93. Given a graph G with m edges and k active verticesW , a 2-vertex equivalent
of G of size O(k), H, can be constructed in O(m) time.

150



Proof. We can find all the initial block-trees using depth-first search [140]. Then we can ap-
ply Lemmas 91 and 92 repeatedly until no more reductions are possible. Several additional
observations are needed to run these reduction steps in O(m) time. As each cut vertex
is removed at most once, we can keep a counter in each component about the number of
cut vertices on it. Also, the second time we run Lemma 91 on a component, it’s already a
cycle, so the reductions can be done without examining the entire cycle by tracking it in a
doubly linked list and removing vertices from it.

It remains to bound the size of the final block-tree. Each leaf in the block-tree has at
least one active vertex that’s not its cut vertex. Therefore, the block-tree contains at most
O(k) leaves and therefore at most O(k) internal components with 3 or more cut vertices,
as well as O(k) components containing active vertices. If these components are connected
by paths with 4 or more blocks in the block tree, then the two middle blocks on this path
meet the condition of Lemma 92 and should have been removed by the above procedure.
This gives a bound of O(k) on the number of blocks, which in turn implies an O(k) bound
on the number of cut vertices. The edge count then follows from the fact that Lemma 91
replaces each component with a cycle, whose number of edges is linear in the number of
vertices, and that the bi-connected components themselves are arranged in a tree.

7.4 3-Edge Connectivity
We now extend our algorithms to 3-edge connectivity. Our starting point is a state-
ment similar to Lemma 88, namely that we can contract all 3-edge connected components.
Though of no consequence to our algorithms, we note that unlike 2-edge or biconnected
components, 3-edge connected components need not be connected.

Lemma 94. Let S be a 3-edge connected component in G. Then contracting all vertices
in S to a single vertex s in H, and endpoints of edges correspondingly, creates a 3-edge
equivalent graph.

Proof. A two-edge cut will not separate a 3-edge connected component. Therefore all
active vertices in S fall on one side of the cut, to which vertex s may also fall. The proof
follows analogously to Lemma 88.

Such components can also be identified in O(m) time using depth-first search [229],
so the preprocessing part of this algorithm is the same as with the 2-connectivity cases.
However, the graph after this shrinking step is no longer a tree. Instead, it is a cactus,
which in its simplest terms can be defined as:
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Definition 95. A cactus is an undirected graph where each edge belongs to at most one
cycle.

On the other hand, cactuses can also be viewed as a tree with some of the vertices
turned into cycles6. Such a structure essentially allows us to repeat the same operations
as in Section 7.3 after applying the initial contractions.

Lemma 96. A connected undirected graph with no nontrivial 3-edge connected component
is a cactus.

Proof. We prove by contradiction. Let G be a graph with no nontrivial 3-edge connected
component. Suppose there exists two simple cycles a and b in G with more than one vertex,
and thus at least one edge, in common.

Call the vertices in the first simple cycle a1, . . . , an and the second simple cycle b1, . . . , bm,
in order along the cycle.

Since these cycles are not the same, there must be some vertex not common to both
cycles. Without loss of generality, assume (by flipping a and b) that b is not a subset of a,
and (by shifting b cyclically) that b1 is only in b and not a.

Now let bfirst be the first vertex after b1 in b that is common to both cycles, so

first
def= min

i
bi ∈ a. (7.1)

and let blast be the last vertex in b common to both cycles

last
def= max

i
bi ∈ a. (7.2)

The assumption that these two cycles have more than 1 vertex in common means that

first < last. (7.3)

We claim bfirst and blast are 3-edge connected.
We show this by constructing three edge-disjoint paths connecting bfirst and blast. Since

both bfirst and blast occur in a, we may take the two paths formed by cycle a connecting
bfirst and blast, which are clearly edge-disjoint.

By construction, vertices

blast+1, . . . , bm, b1, . . . , bfirst−1 (7.4)

6Some ‘virtual’ edges are needed in this construction, because a vertex can still belong to multiple
cycles.
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are not shared with a. Thus they form a third edge-disjoint path connecting bfirst and blast,
and so the claim follows. Therefore, a graph with no 3-edge connected vertices, and thus
no nontrivial 3-edge connected component has the property that two simple cycles have at
most one vertex in common.

With this structural statement, we can then repeat the reductions from the 2-edge
equivalent algorithm from Section 7.3.1 to produce the 3-edge equivalent graph.

Lemma 97. Given a graph G with m edges and k active vertices W , a 3-edge equivalent
of G of size O(k), H, can be constructed in O(m) time.

Proof. Lemma 96 means that we can reduce the graph to a cactus after O(m) time pre-
processing.

First consider the tree where the cycles are viewed as vertices. Note that in this view,
a vertex that’s not on any cycle is also viewed as a cycle of size 1. This can be pruned in
a manner analogous to Lemma 89:

1. Cycles containing no active vertices and incident to 1 or 2 other cycles can be con-
tracted to a single vertex.

2. Inactive single-vertex cycles incident to 1 other cycle can be removed.

This procedure takes O(m) time and produces a graph with at most O(k) leaves. Correct-
ness of the first rule follows by replacing a cut of the two edges within an inactive cycle by
a cut of the single contracted vertex with one of its neighbors. The second rule does not
affect any cuts separating W . It remains to reduce the length of degree 2 paths and the
sizes of the cycles themselves.

As in Lemma 89, all inactive vertices of degree 2 can be replaced by an edge between its
two neighbors. This bounds the length of degree 2 paths and reduces the size of each cycle
to at most twice its number of incidences with other cycles. This latter number is in turn
bounded by the number of leaves of the tree of cycles. Hence, this contraction procedure
reduces the total size to O(k).

We remark that this is not identical to iteratively removing inactive vertices of degrees
at most 2. With that rule, a cycle can lead to a duplicate edge between pairs of vertices,
and a chain of such cycles needs to be reduced in length.

153



7.5 Tri-connectivity
Tri-connectivity queries involving s and t ask for the existence of a separation pair {u, v}
whose removal disconnects s from t. In this section we will extend our techniques to offline
tri-connectivity. To do so, we rely on a tree-like structure for the set of separation pairs
in a bi-connected graph, the SPQR tree [140, 69]. We review these structures in Section
7.5.1 and show how to trim them in Section 7.5.2. As these trees require that the graphs
are bi-connected, we extend this subroutine to our full construction in Section 7.5.3.

7.5.1 SPQR Trees

We now review the definition of SPQR Trees. We will follow the model given in Chapter
2 of [233]. For a more thorough description of SPQR Trees, please refer to [233].

SPQR trees are based on the definition of a split pair, which generalizes separation
pairs by allowing the extra case of {u, v} being an edge of G. A split component of the
split pair {u, v} is either an edge connecting them, or a maximal connected subgraph G′

of G such that removing {u, v} does not disconnect G′.
The SPQR tree is defined recursively on a graph G with a special split pair {s, t}. This

process can be started by picking an arbitrary edge as the root. Each node µ in the tree
T has an associated graph denoted as its skeleton, skeleton(µ), and is associated with an
edge in the skeleton of its parent ν, called the virtual edge of µ in skeleton(ν). In this
way, each virtual edge of a node ν corresponds to a child of ν. For contrast, we will also
use real edges to denote edges that are present in G.

• Trivial Case: if G is a single edge from s to t, then T contains a single Q-node whose
skeleton is G itself.

• Series Case: If the removal of the (virtual) edge st creates cut-vertices, then these cut
vertices partition G into blocks G1 . . .Gk and the block-tree has a cycle-like structure.
The root of T is then an S-node, and skeleton(µ) is the cycle containing these cut
vertices with virtual edges corresponding to the blocks.

• Parallel Case: If the split pair {s, t} creates split components G1 . . .Gk with k ≥ 2,
the root of T is a P-node and the skeleton contains k parallel virtual edges from s to
t corresponding to the split components.

• Rigid Case: If none of the above cases apply, then the root of T is an R-node µ
and skeleton(µ) is a tri-connected graph where each edge corresponds to a split
pair {si, ti}, and the corresponding child contains the union of all split components
generated by this pair.
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Note that by this construction, each edge in the SPQR tree corresponds to a split-pair.
An additional detail that we omitted is that the construction of R-nodes picks only the
split pairs that are maximal w.r.t. the edge st. This detail is unimportant to our trimming
routine, but is discussed in [233]. Our algorithm acts directly upon the SPQR tree, and
we make use of several important properties of this tree in our reduction routines.

When viewed as an unrooted tree, the SPQR tree is unique with all leaves as Q-nodes.
For simplicity, we will refer to this tree with all Q-nodes removed as the simplified SPQR
tree, or Tsimple. Also, it suffices to work on the skeletons of nodes, and the only candidates
for separation pairs that we need to consider are:

1. Two cut vertices in an S-node.

2. The split pair corresponding to a P-node.

3. Endpoints of an edge in an R-node.

7.5.2 Trimming SPQR trees

We now show how to convert a bi-connected graph with k active vertices to a 3-vertex
equivalent with O(k) vertices and edges. Our algorithm makes a sequence of modifications
on the SPQR trees similar to the trimming from Section 7.3. We will call a vertex u
internal to a node µ of the SPQR tree if u is contained in the split graph of µ, and u is
not part of the split pair associated with µ. We call a vertex u exact to a node µ if it is
internal to µ but not to any descendants of µ. Exact vertices provide a way to count nodes
according to active vertices without reusing active vertices for multiple nodes.

We first give a way to remove split components with no internal active vertices, which
we will refer to as inactive split components.

Lemma 98. Consider an inactive non-Q split component G′ produced by the split pair
{u, v}. We may create a 3-vertex equivalent graph H by the following replacement rule: if
u and v are ≥ 3-vertex connected in G, we may replace G′ with the edge uv; otherwise, we
may replace G′ with a vertex x and edges ux, vx.

Proof. Consider a cut in G. If u and v are on the same side of the cut, an equivalent cut
exists in H by placing u, v, and possibly x on the same side of the cut. Similarly, a cut
in G that removes either u or v can be made in H by removing the same vertex. If a cut
in G separates u and v, u and v are not ≥ 3-vertex connected in G and a vertex w in G′

must have been removed since G′ connects u and v. Removing x instead of w creates an
equivalent cut in H.
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In the other direction, if u and v were ≥ 3-vertex connected in G, also no cut in H
separates u and v. If u and v were not ≥ 3-vertex connected in G, there exists a vertex w
in G′ whose removal separates u and v in G′. Therefore the cut in H produced by vertices
{x, z} for some z ∉ G′ that separates u and v can be made in G by removing {w, z} instead.
All other cuts in H can be formed in G by placing G′ on the same side as any remaining
vertex in {u, v}.

An important consequence of Lemma 98 is that an inactive split component is a leaf in
Tsimple. Because of this, it will be easier to think of inactive split components in the same
way we think of Q-nodes. We define the tree Tsimple′ as the tree Tsimple with inactive split
component leaves removed. Every leaf µ in Tsimple′ must have an internal active vertex
u. Furthermore, any vertex internal to a node η is only internal to ancestors and possibly
descendants of η. Since µ is a leaf in Tsimple′ , it has no descendants. It follows that u is
exact for µ and the tree Tsimple′ has O(k) leaves.

We will use this to bound the number of leaves in T . However, if G contains an R-node
whose skeleton contains a complete graph between active vertices, the number of leaves in
T can still be Ω(k2). Therefore, we need another rule to process each skeleton of Tsimple′ so
that we can bound its size by the number of its exact active vertices and split components.

Lemma 99. There exists a constant c0 such that any node µ in Tsimple′ whose skeleton
contains a total of k exact active vertices and virtual edges corresponding to active split
components can be replaced by a node whose skeleton contains c0 ⋅k vertices/edges to give
a 3-vertex equivalent graph.

In other words, the number of children of µ in T is at most c0 ⋅ k.

Proof. We consider the cases where the node is of type S, P, R separately.
If the node is a P-node, it suffices to consider the case where there are 3 or more

inactive split components incident to the cut pair. Removing at most 2 vertices from these
components will leave at least one of them intact, and therefore not change the connectivity
between the separation pair, and therefore the other components. Therefore, all except 3
of these components can be discarded.

If the node is an S-node, any virtual edge in the cycle corresponding to an inactive split
component that’s not incident to two active vertices is replaced by actual edges via Lemma
98. Furthermore, two consecutive real edges in the cycle connecting three inactive vertices
can be reduced to a single edge by removing the middle vertex in a manner analogous to
Lemma 89.

Therefore the size of the cycle is proportional to the number of exact active vertices
and active split components.
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For an R-node, we can identify all vertices that are either exact and active, or are
incident to virtual edges corresponding to active split components. Then we can simply
connect these vertices together using a tri-connected graph of linear size (e.g. a wheel
graph) and add the active split components back between their respective separation pairs.
Every cut in the new skeleton with a child in Tsimple can be produced by the original graph,
and the only cuts in the original graph that can’t be produced in the new one are cuts
isolating an inactive component. Therefore the two graphs are 3-vertex equivalent.

Before we can bound the number of nodes in Tsimple′ , we must eliminate long paths
where a node has only one active child, which in turn has only one active child, etc. This
is only possible if there exists an active vertex (vertices) internal to each split component,
otherwise by Lemma 98, a node with no internal active vertices becomes a leaf. Since
the internal active vertex (vertices) are shared amongst all ancestors, there is no way to
associate the active vertex with a constant number of SPQR nodes. The replacement rule
in this Lemma provides a way to get around this.

Lemma 100. Let µ1, µ2, and µ3 be a parent-child sequence of SPQR nodes where µ2 and
µ3 are associated with split pairs {u, v} and {x, y} respectively, µ3 is the single active child
of µ2, µ2 is the single active child of µ1, and either none of u, v, x, and y are active or
u = x and is active. We may replace µ2 with µ3, effectively replacing vertex u with x and
v with y.

Proof. In G, cuts induced by the removal of {u, v} and {x, y} both give the same partition
of active vertices. Therefore, we only need one in H, which is given by the cut {x, y}. All
other cuts in G not present in H only separate inactive split components, which need not
be represented in H.

In the other direction, every cut in H is still present in G. Thus the new graph H
preserves 3-vertex equivalence.

We can now bound the number of nodes in Tsimple′ after no reductions via Lem-
mas 98, 99, and 100 are possible.

Lemma 101. Consider a graph G where no reductions via Lemmas 98, 99, and 100 are
possible. There is a constant c1 such that the number of nodes in G’s SPQR tree T is no
more than c1 ⋅ k, where k is the total number of active vertices in G.

Proof. As explained earlier, the tree Tsimple′ has O(k) leaves. To bound the total number
of nodes, we must consider the length of a path of degree 2 nodes in Tsimple′ . If a node µ
on this path has a split pair {u, v} with an active vertex, say u, internal to its parent η
(implying η does not have u in its split pair), then u is exact for η and we may associate
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u with η. Otherwise, consider two adjacent degree 2 nodes to which this does not apply.
The parent may have an active vertex in its split pair not shared with its child, however
then its child cannot have an active vertex in its split pair or else it fits the above situation
(the active vertex in the child’s split pair is internal to the parent). Therefore this can
only happen once until the parent and child have at most one active vertex shared in their
split pairs, and the procedure of Lemma 100 may be used to replace the parent node with
the child. It follows that we may associate each active vertex along this path to a constant
number of SPQR nodes.

Since the number of nodes of degree ≥ 3 in a tree is bounded by the number of leaves,
the above shows Tsimple′ has O(k) nodes. We now consider the full tree T . This tree adds
inactive split components with a constant number of Q-node leaves as well as Q-node leaves
themselves to active split components. By Lemma 99, for any node µ in Tsimple′ , we add
at most c0 ⋅k extra children to µ in T , where k is the sum of active vertices exact to µ and
the number of active split components, which are children of µ in Tsimple′ . The sum of the
degrees of all the vertices in Tsimple′ is O(k), therefore the number of extra nodes in T is
also O(k). Therefore T has O(k) nodes.

We now consider applying Lemmas 98, 99, and 100 on G to produce a 3-vertex equiv-
alent graph H in linear time.

Lemma 102. Given a bi-connected graph G and k active vertices W , we may find the
SPQR tree associated with G and apply the reduction rules given by Lemmas 98, 99, and
100 until exhaustion in linear time. From this can be constructed a graph H 3-vertex
equivalent to G with O(k) vertices and edges.

Proof. The SPQR tree can be found in linear time [30]. Lemma 101 shows that continued
application of Lemmas 98, 99, and 100 produces an SPQR tree T with O(k) nodes. As each
leaf of T is an edge of the graph it represents, this shows the resulting graph represented
has O(k) vertices and edges.

The rules given by Lemmas 98, 99, and 100 can be applied until exhaustion in O(m)
time. First, we may apply Lemma 98 by traversing each split component of T and applying
the lemma when possible. Next, we may apply Lemma 99 by a similar traversal. Finally,
the rule of Lemma 100 can be applied by keeping a stack of the SPQR nodes of a depth-first
traversal of the SPQR tree T . All three rules require a single traversal of T each and thus
can be done in O(m) total time.
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7.5.3 Constructing the Full Equivalent

We now extend this trimming routine for bi-connected graphs to arbitrary graphs. By an
argument similar to that at the start of Section 7.3, we may assume that G is connected.
Therefore we need to work on the block-tree in a manner similar to Section 7.3.2. We first
show that we may invoke the trimming routine from Section 7.5.2 on each bi-connected
component.

Lemma 103. Let B be a bi-connected component in G and B′ be a 3-vertex equivalent
graph for B where the active vertices consist of all cut vertices and active vertices in B.
Replacing B with B′ gives H that’s 3-vertex equivalent to G.

Proof. By symmetry of the setup it suffices to show that any cut in G has an equivalent
cut in H. Since B is two-connected, any cut in B that does not remove at least 2 vertices
in B results in all vertices of B on the same side of the cut. This means any vertex in B
that’s not a cut-vertex in G can be added without changing the cut. This also means that
removing these vertices has the same effect in G and H.

Therefore it suffices to consider cuts that remove 2 vertices in B. By assumption, there
exists a cut in H that results in the same set of active vertices in C, and cut vertices
incident to B on one side. The structure of the block tree gives that the rest of the graph
is connected to B via one of the cut vertices, and the side that this cut vertex is on dictates
the side of the cut that part is on. Therefore, the rest of the graph, and therefore the active
vertices not in B will be partitioned the same way by this cut.

It remains to reduce the block tree, which we do in a way analogous to Section 7.3.2.
However, the proofs need to be modified for separation pairs instead of a single cut
edge/vertex.

Lemma 104. A bi-connected component containing no active vertices and incident to
only one cut vertex can be removed (while keeping the cut-vertex) to create a 3-vertex
equivalent graph.

Proof. Any cut in G can be mapped over to H by removing the same set of vertices (minus
the ones in this component). Given a cut in H, removing the same set of vertices in G
results in a cut with this component added to one side. As there are no active vertices in
this cut, the cut separates the active vertices in the same manner.

Long paths of bi-connected components can be handled in a way similar to Lemma 92.
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Lemma 105. Two bi-connected components C1 and C2 with no active vertices that share
cut vertex w and are only incident to one other cut vertex each, u and v respectively, can
be replaced by an edge connecting u and v, preserving 3-vertex equivalence.

Proof. As there is a path from u to v through these components and w, a minimum cut
that separates W in G either removes one of u, v, or w, or has uv on the same side. In the
first case, removing u or v leads to the same cut as none of them are active, while in the
second case the edge uv does not cross the cut. Since uv is connected by an edge in H, in
a cut in H they’re either on the same side, or one of u or v is removed. In either case, an
equivalent cut in G can be formed by assigning what remains of C1 and C2 to the same
side as any remaining vertex.

Our final construction can be obtained by applying these routines to the block tree
first, then Lemma 103.

Lemma 106. Given a graph G withm edges and k active verticesW , a 3-vertex equivalent
of G of size O(k), H, can be constructed in O(m) time.

Proof. By a proof similar to Lemma 93, applying Lemmas 104 and 105 repeatedly leads
to a 3-vertex equivalent graph H whose block-tree contains O(k) components and cut
vertices.

The total number of cut vertices and active vertices summed over all bi-connected
components is O(k). Therefore, applying Lemma 103 on each component gives the size
bound.
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Chapter 8

Simple Minimum Cuts in Near-Linear
Time

8.1 Introduction
The minimum cut problem on an undirected (weighted) graph G asks for a vertex subset
S such that the total number (weight) of edges from S to V ∖ S is minimized. The
minimum cut problem is a fundamental problem in graph optimization and has received
vast attention by the research community across a number of different computation models
[153, 103, 205, 150, 155, 121, 228, 145, 59, 133, 51, 152, 113, 158, 134, 64, 112, 187, 220, 114].
Its applications include network reliability [207, 151], cluster analysis [38], and a critical
subroutine in cutting-plane algorithms for the traveling salesman problem [12].

A seminal result in weighted minimum cut algorithms is an algorithm by Karger [153]
which produces a minimum cut on an m-edge, n-vertex graph in O(m log3 n) time with
high probability1. This algorithm stood as the fastest minimum cut algorithm for the past
two decades, until very recently, work published on arXiv shaved a log factor in Karger’s
approach [182, 110]. The main component of Karger’s algorithm is a subroutine that finds
a minimum cut that 2-respects (cuts two edges of) a given spanning tree T of a graph G.
In other words, the cut found is minimal amongst all cuts of G that cut exactly two edges
of T . Despite the number of pairs of spanning tree edges totaling Ω(n2), Karger shows
this can be accomplished in O(m log2 n) time. Unfortunately, the procedure developed is
particularly complex, a detail Karger admits when comparing the algorithm to a simpler
O(n2 logn) algorithm he develops to find all minimum cuts [153]. Indeed, perhaps for
this reason, implementation of the asymptotically fastest minimum cut algorithm has been

1With probability 1 − 1/nc for some constant c, the size of the minimum cut produced is minimal.
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avoided in practical performance analyses [59, 145].
In this chapter, we give a simple algorithm to find a minimum cut that 2-respects a

spanning tree T of a graph G. Our procedure runs in O(m log2 n) time, matching the
performance of Karger’s more-complicated subroutine. We achieve the simplification via a
clever use of the heavy-light decomposition. Although our procedure requires the top tree
data structure [10] to achieve optimal performance, at the cost of an extra O(logn) factor,
heavy-light decomposition can be used a second time so that only augmented binary search
trees are required. We also give a self-contained version of Karger’s algorithm [153] with
this new procedure and implement it, avoiding issues associated with previous implemen-
tations [153, 59].

Karger’s algorithm [153], as well as the edge-sampling technique it is based on [152],
has been extended and adapted to achieve results in a number of different settings [114,
64, 228, 113, 112, 187]. In particular, in the fully-dynamic setting, Thorup [228] uses the
tree-packing technique developed by Karger [153], but maintains a larger set of trees so
that the minimum cut 1-respects at least one of them. In the parallel setting, Geissmann
and Gianinazzi [113] are able to parallelize both the dynamic tree data structure and
the necessary computation required by Karger’s algorithm [153]. This work is based off
prior work in the cache-oblivious model [112], also based on Karger’s algorithm [153]. In
the distributed setting, Ghaffari and Kuhn [114] achieve a (2 + ε)-approximation to the
minimum cut based on Karger’s sampling technique [152]. This is improved to a (1 + ε)-
approximation with similar runtime by Nanongkai and Su [187]. Nanongkai and Su develop
their algorithm from Thorup’s fully-dynamic min-cut algorithm [228], Karger’s sampling
technique [152], and Karger’s dynamic program to find the minimum cut that 1-respects
a tree [153]. Finally, Daga et al. [64] achieve a sublinear time distributed algorithm to
compute the exact minimum cut in an unweighted undirected graph. This algorithm builds
off a more recent development in minimum cut algorithms [158], combined again with the
tree-packing technique introduced by Karger [153]. Specifically, a tree packing is found in
an efficient number of distributed rounds, then Karger’s more-complicated algorithm to
find a minimum 2-respecting cut is applied in the distributed setting.

This vast amount of work based on Karger’s original near-linear time algorithm sug-
gests that simplifying it may yield additional techniques that can be applied both se-
quentially and in alternative settings. Indeed, the very recent improvements to Karger’s
algorithm [182, 110] were published on arXiv two months after the paper this chapter is
based on was first made available online [174], one of which [110] cites our work as what
drew the authors to the problem. Indeed, their procedure for “descendent edges”, given in
Section 3.1, is similar to our procedure given in Section 8.5. We have further found use of
the approach given in this chapter to achieve new results in dynamic higher connectivity
algorithms [179].
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This chapter is organized as follows. In Section 8.2, we state the history of the minimum
cut problem, in particular discussing other simple algorithms. In Section 8.3, we give an
overview of Karger’s algorithm to pack spanning trees, leaving the details of the approach
to an optional Section 8.8, appearing at the end of the chapter. Our main contribution
is given in Sections 8.4 and 8.5. In Section 8.4, we show how to find minimum cuts that
1-respect (cut one edge of) a tree using our new procedure. In Section 8.5, we extend the
approach to find minimum cuts that 2-respect (cut two edges of) a tree. We discuss our
implementation in Section 8.6 and give concluding remarks in Section 8.7.

8.2 Related Work
Before we begin, we give a brief history of the minimum cut problem. The minimum cut
problem was originally perceived as a harder variant of the maximum s-t flow problem
and was solved by (n

2
) flow computations. Gomory and Hu [116] showed how to compute

all pairwise max flows in n − 1 flow computations, thus reducing the complexity of the
minimum cut problem by a Θ(n) factor. Hao and Orlin [130] further showed that the
minimum cut in a directed graph can be reduced to a single flow computation.

Nagamochi and Ibaraki [186, 185] developed a deterministic algorithm that is not based
on computing maximum s-t flows. They achieve O(nm + n2 logn) time on a capacitated,
undirected graph. This procedure was simplified by Stoer and Wagner [220], achieving the
same runtime. The Stoer-Wagner algorithm gives a simple procedure to find an arbitrary
minimum s-t cut. Vertices s and t are then merged, and the procedure repeats. Although
the O(nm+n2 logn) time complexity requires an efficient priority queue such as a Fibonacci
heap [99], a binary heap can be used to achieve runtime O(nm logn).

Two algorithms based on edge contraction have been devised. The first is an algorithm
of Karger [150] and is incredibly simple. The algorithm randomly contracts edges until
only two vertices remain. Repeated O(n2 logn) times, the algorithm finds all minimum
cuts on an undirected, weighted graph in O(n2m logn) time with high probability. This
technique was improved by Karger and Stein [155] by observing an edge of the minimum
cut is more likely to be contracted later in the contraction procedure. Their improvement
branches the contraction procedure after a certain threshold has been reached, spending
more time to avoid contracting an edge of the minimum cut when fewer edges remain. The
Karger-Stein algorithm achieves runtime O(n2 log3 n), finding the minimum cut with high
probability.

In an unweighted graph, Gabow [103] showed how to compute the minimum cut in
O(cm log(n2/m)) time, where c is the capacity of the minimum cut. Karger [152] im-
proved Gabow’s algorithm by applying random sampling, achieving runtime Õ(m√

c) in

163



expectation2. The sampling technique developed by Karger [152], combined with the tree-
packing technique devised by Gabow [103], form the basis of Karger’s near-linear time
minimum cut algorithm [153]. As previously mentioned, this technique finds the minimum
cut in an undirected, weighted graph in O(m log3 n) time with high probability.

A recent development uses low-conductance cuts to find the minimum cut in an undi-
rected unweighted graph. This technique was introduced by Kawarabayashi and Tho-
rup [158], who achieve near-linear deterministic time (estimated to be O(m log12 n)). This
was improved by Henzinger, Rao, and Wang [134], who achieve deterministic runtime
O(m log2 n (log logn)2). Although the algorithm of Henzinger et al. is more efficient than
Karger’s algorithm [153] on unweighted graphs, the procedure, as well as the one it was
based on [158], are quite involved, thus making them largely impractical for implementation
purposes.

Since an earlier version of the paper on which this chapter is based became available
online [174], several important improvements in minimum cut algorithms have been dis-
covered. Ghaffari et al. [115] devise a randomized unweighted minimum cut algorithm
by using contraction based on sampling from each vertex, rather than standard uniform
edge sampling. Their algorithm reduces unweighted minimum cuts to weighted minimum
cuts on a graph with O(n) edges, achieving O(min(m + n log3 n,m logn)) time complex-
ity. Gawrychowski et al. [110] improve Karger’s procedure for finding the minimum cut
that 2-respects a tree to O(m logn) time. This improves the state-of-the-art for weighted
minimum cuts to O(m log2 n) time and, by Ghaffari et al. [115], improves the complex-
ity of unweighted minimum cuts to O(min(m + n log2 n,m logn)) time. Mukhopadhyay
and Nanongkai [182] also study Karger’s procedure for finding the minimum cut that 2-
respects a tree, arriving at an O(m log2 n

log logn+n log6 n) time weighted minimum cut algorithm.
Mukhopadhyay and Nanongkai further apply their new procedure to minimum cuts in the
cut-query and streaming models.

8.3 Overview of Karger’s Spanning Tree Packing
We first formalize the definition mentioned earlier in this chapter and originally given by
Karger.

Definition 107 (Karger [153]). Let T be a spanning tree of G. We say that a cut in G
k-respects T if it cuts at most k edges of T . We also say that T k-constrains the cut in G.

We also define weighted tree packings.
2The Õ(f) notation hides polylog f factors.
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Definition 108 (Karger [153]). A weighted tree packing is a set of spanning trees, each
with an assigned non-negative weight, such that the total weight of trees containing a given
edge of G is no greater than the weight of that edge. The weight of the packing is the total
weight of the trees in it.

The first stage of Karger’s algorithm is to sample edges independently and uniformly
at random from graph G to form a graph H, and then pack spanning trees in H. If we
sample a tree T from a packing with probability proportional to its weight, a minimum
cut in G will cut at most two edges of T with constant probability. Thus, if we sample
O(logn) trees from the weighted packing, a minimum cut in G 2-respects at least one of
the sampled trees with high probability. The remainder of the algorithm is a procedure
that, given a spanning tree T of a graph G, finds a minimal cut of G that 2-respects T .
This procedure is applied to all O(logn) sampled spanning trees.

We leave the intuition behind Karger’s approach and the relevant mathematics to Sec-
tion 8.8, to be read at the reader’s discretion. Here we also include versions of our algo-
rithms with general constants.

We will use Algorithm 6 to pack spanning trees, credited to Thorup and Karger [226],
Plotkin-Shmoys-Tardos [205], and Young [242]. The procedure appears in Gawrychowski
et al. [110].

Algorithm 6 Obtain a Packing of Weight at least .4c from a Graph G

Let G be a graph with m edges and n vertices.

1. Initialize `(e)← 0 for all edges e of G. Initialize multiset P ← ∅. Initialize W ← 0.

2. Repeat the following:

(a) Find a minimum spanning tree T with respect to `(⋅).
(b) Set `(e)← `(e) + 1/(75 lnm) for all e ∈ T . If `(e) > 1, return W,P .

(c) Set W ←W + 1/(75 lnm).
(d) Add T to P .

Lemma 109 ([205, 226, 242]). Given an undirected unweighted graph G with m edges,
n vertices, and minimum cut c, Algorithm 6 returns a weighted packing of weight at least
.4c in O(mc logn) time.
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Algorithm 6 and Lemma 109 are given in Section 8.8 with general epsilon and proven.
To achieve O(mc logn) time in Algorithm 6, we may use a linear time minimum spanning
tree routine [154] or the following implementation trick given by Gawrychowski et al. [110].
In the use of Algorithm 6 in Algorithm 7, the graph in Algorithm 6 has edges which may be
duplicated O(logn) times, while the number of distinct edges can be bounded as a factor
Θ(logn) fewer. It suffices to invoke the minimum spanning tree algorithm of Algorithm 6
with only the minimum of each set of parallel edges. We can easily maintain the minimum
of each set of parallel edges in O(logn) time per edge per iteration, which suffices to shave a
log factor in the runtime of Algorithm 6. Note that if we chose to avoid these optimizations
and/or avoid the use of top trees in Section 8.5, the final runtime becomes O(m log4 n).

We use Algorithm 6 in Algorithm 7 to obtain Θ(logn) trees for the 2-respect algorithm
given in Sections 8.4 and 8.5.

Lemma 110. Algorithm 7 returns a collection of Θ(logn) spanning trees of G in time
O(m log3 n) such that the minimum cut of G 2-respects at least one tree in the collection
with high probability.

Algorithm 7 and Lemma 110 are given in Section 8.8 with general epsilon and proven.

8.4 Minimum Cuts that 1-Respect a Tree
We now give our algorithm for finding a minimum cut that 1-respects a spanning tree T of
a graph G. We present it here only to build intuition for the idea used to find 2-respecting
cuts in the following section, which also finds 1-respecting cuts.

We use the following lemma, a consequence of Sleator and Tarjan’s heavy-light decom-
position [218].

Lemma 111 (Sleator and Tarjan [218]). Given a tree T , there is an ordering of the edges
of T such that the edges of the path between any two vertices in T consist of the union of
up to 2 logn contiguous subsequences of the order. The order can be found in O(n) time.

Proof. We use heavy-light decomposition, credited to Sleator and Tarjan [218]. Note that
the algorithm assumes T is rooted. We can root T arbitrarily. We then take the heavy
paths given from the usual construction and concatenate them in any order.

Our algorithm begins by labeling the edges of T in heavy-light decomposition order
e1, . . . , en−1 as given by Lemma 111. Consider the cut of G induced by the vertex partition
resulting from cutting a single edge of T . We iterate index i through heavy-light decom-
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Algorithm 7 Obtain Θ(logn) Spanning Trees for the 2-respect Algorithm

Let d denote the exponent in the probability of success 1 − 1/nd. Let b = 3 ⋅ 62(d + 2) lnn.

1. Form graph G′ from G by first normalizing the edge weights of G so the smallest
non-zero edge weight has weight 1, then multiplying each edge weight by 100 and
rounding to the nearest integer. Let U be an upper bound for the size of the
minimum cut of G′.

2. Initialize c′ ← U . Repeat the following:

(a) Construct H in the following way: for each edge e of G′, let e have weight in
H drawn from the binomial distribution with probability p = min(b/c′,1) and
number of trials the weight of e in G′. Cap the weight of any edge in H to at
most ⌈7/6 ⋅ 12b⌉.

(b) Run Algorithm 6 on H, considering an edge of weight w as w parallel edges.
There are three cases:

i. If p = 1, set P to the packing returned and skip to step 3.
ii. If the returned packing is of weight 24b/70 or greater, set c′ ← c′/6 and

repeat steps 2a and 2b, setting P to the packing returned and then
proceeding to step 3.

iii. Otherwise, repeat steps 2a and 2b with c′ ← c′/2.

3. Return ⌈36.53d lnn⌉ trees sampled uniformly at random proportional to their
weights from P .

position order and keep up-to-date the total weight of all edges of G that cross the cut
induced by ei. The minimum weight found is then returned.

Call the edges of G in T tree edges and edges of G not in T non-tree edges. Critical to
our approach is the following proposition.

Proposition 112. For any cut of G that 2-respects T , the non-tree edge uv crosses the
cut if and only if exactly one tree edge from the uv-path in T crosses the cut.

Proof. Recall that for any edge of T crossing the cut, the components of each of its end-
points must fall on opposite sides of the cut. Therefore if the number of tree edges in the
cut on the uv-path in T is odd, the non-tree edge uv crosses the cut. Since we are only
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considering cuts that cut at most 2 edges of T , the proposition follows.

We now give our algorithm explicitly.

Algorithm 8 Minimum Cuts that 1-Respect T

1. Arrange the edges of T in the order of Lemma 111; label them e1, . . . , en−1.

2. For each non-tree edge uv, mark every i such that ei is on the uv-path in T and ei+1

is not on the uv-path in T , or vice versa. Indicate whether edge e1 is on the
uv-path in T .

3. Iterate index i from 1 to n − 1, in each iteration keeping track of the total weight of
all non-tree edges uv such that ei lies on the uv-path in T , added together with the
weight of edge ei.

4. Return the minimum total weight found in step 3.

Lemma 113. Algorithm 8 finds the value of the minimum cut that 1-respects a spanning
tree T of a graph G in O(m logn) time.

Proof. Via Proposition 112, in a 1-respecting cut including only ei from T , a non-tree edge
uv is cut if and only if the edge ei lies on the uv-path in T . Algorithm 8 keeps track of all
such non-tree edges for each possible ei that is cut, therefore it finds the minimum cut of
G that cuts a single edge of T .

The time complexity can be determined as follows. Finding the heavy-light decompo-
sition for step 1 takes O(n) time. In doing so, we can label each edge and each heavy
path so that every edge knows its index in the order as well as the heavy path to which
it belongs. Each heavy path can store its starting and ending index in the order. With
this information, step 2 can be completed by walking up from u and v in T towards the
root of T . We spend O(1) work per heavy path from root to vertex, which is bounded by
O(logn) via the heavy-light decomposition. In total this step takes O(m logn) time.

In step 3, we spend O(n) total work plus O(1) work for each transition of the current
edge ei on or off the uv path for all non-tree edges uv. Each non-tree edge transitions on
or off O(logn) times as guaranteed by Lemma 111, therefore the time complexity of this
step is O(m logn). Overall, Algorithm 8 takes O(m logn) time.

Note that if we wish to find the edges in the minimum cut, we can keep track of the
minimum-achieving index i so we know the vertex separation of the minimum cut. With
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the vertex separation, it is easy to find in O(m logn) time which non-tree edges cross the
cut.

Further note that we need not know the identity of the non-tree edge uv as ei falls on
or off the uv-path. Thus the space required for step 2 need only be O(m), since at each
transition point we can just keep track of the total weight added or subtracted from the
minimum cut.

8.5 Minimum Cuts that 2-Respect a Tree
We now discuss an extension of Algorithm 8 to find a minimum cut that 2-respects a tree.
We still iterate i through heavy-light decomposition order, but in addition to cutting ei,
we find the best j so that the cut resulting from cutting ei and ej is minimal. To find the
best j efficiently we use a clever data structure.

Lemma 114 (Alstrup et al. [10]). There is a data structure that supports the following
operations on a weighted tree T in O(logn) time:

• PathAdd(u, v, x) := Add weight x to all edges on the unique uv-path in T .

• NonPathAdd(u, v, x) := Add weight x to all edges not on the unique uv-path in T .

• QueryMinimum() := Query for the minimum weight edge in T .

Proof. Operations PathAdd() and QueryMinimum() are just Theorems 3 and 4 of [10].
Operation NonPathAdd(u, v, x) can be achieved by keeping a counter of global weight
added to (subtracted from) T and executing PathAdd(u, v, -x) to undo this action on
the uv-path. See also [225].

Note that the weight x can be positive or negative.
If we seek to avoid implementing any sophisticated data structures, we can instead use

heavy-light decomposition again and support the above two operations in O(log2 n) time.
To see how, by Lemma 111 each path of T represents at most O(logn) contiguous segments
of the total order of edges. Range add and a global minimum query can be supported in
O(logn) time via an augmented binary search tree. Thus the total time complexity per
operation is O(log2 n).

We use the range operations as follows. As we iterate index i through the order of
Lemma 111, we keep up to date the cost of the cut resulting from cutting any other edge
ej via the data structure of Lemma 114. Instead of querying each other edge ej directly,
however, we just use a global minimum query to find the best choice of j. The procedure
is given in Algorithm 9. The first two steps are the same as Algorithm 8.
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Algorithm 9 Minimum Cuts that 2-Respect T

1. Arrange the edges of T in the order of Lemma 111; label them e1, . . . , en−1.

2. For each non-tree edge uv, mark every i such that ei is on the uv-path in T and ei+1

is not on the uv-path in T , or vice versa. Indicate whether edge e1 is on the
uv-path in T .

3. Initialize the data structure of Lemma 114 on T so that the weight of edge ej is
equal to its weight in T .

4. Iterate index i from 1 to n − 1. Via the computation done in step 2, maintain the
following invariants in the data structure of Lemma 114 as i is iterated.

(a) When edge ei is on the uv-path in T , add the weight of non-tree edge uv to all
edges off the uv-path in T .

(b) When edge ei is off the uv-path in T , add the weight of non-tree edge uv to all
edges on the uv-path in T .

Each time i is incremented, after updating weights in Lemma 114 as per 4a and 4b,
add ∞ to edge ei, execute QueryMinimum(), then subtract ∞ from edge ei. The
value of the minimum cut found in each iteration is the result of QueryMinimum()
plus the weight of ei.

5. Return the minimum of the smallest cut found in step 4 with the result of
QueryMinimum() when we consider edge ei to be off the path of all non-tree edges
uv in the data structure of Lemma 114.

Lemma 115. Algorithm 9 finds the value of the minimum cut that 2-respects a spanning
tree T of a graph G in O(m log2 n) time.

Proof. By Proposition 112, in a 2-respecting cut including ei and ej of T , a non-tree edge
uv is cut if and only if exactly one of ei or ej lies on the uv-path in T . Observe that the
invariants enforced in step 4 guarantee that in each iteration the total weight of edges from
the cut resulting from cutting any other edge ej along with ei is kept up-to-date in the
data structure of Lemma 114. Since the minimum such j is found for every i, it follows
that step 4 finds the weight of the minimum cut of G that cuts exactly two edges of T . In
step 5, we return the minimum of this weight with a single call to QueryMinimum() where
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we assume edge ei to be off the path of all non-tree edges uv. Observe that this computes
the minimum cut of G that cuts exactly one edge of T . Thus, the minimum cut of G that
2-respects T is returned in step 5.

The time complexity follows similarly to Algorithm 8. Steps 1 and 2 take O(m logn)
total time. However, step 4 requires O(logn) time for non-tree edge uv whenever edge
ei falls on or off the uv-path in T , since the data structure of Lemma 114 takes O(logn)
time per operation. For a given non-tree edge uv, edge ei falls on or off the uv-path in T
a total of O(logn) times by Lemma 111; thus step 4 takes O(m log2 n) time. The final
QueryMinimum() call in step 5 takes O(m logn) time. The total time taken is O(m log2 n).

We make a few further remarks about Algorithm 9. To determine the edges of the
minimum cut, the data structure of Lemma 114 can be augmented to return the index
j of the edge that achieves the minimum given in operation QueryMinimum(). With ei
and ej, we can determine the vertex partition in G of the minimum cut and, as stated in
Section 8.4, and from this we can find which non-tree edges cross the minimum cut easily
in O(m logn) time.

The space complexity of Algorithm 8 was easily linear. In Algorithm 9, we must know
the identity of each non-tree edge uv in every transition point where edge ei falls on or off
the uv-path. Naively this costs O(m logn) space. This can be improved to O(m) space
by performing step 2 incrementally while executing step 4. That is, we only need to know
the next transition point where the non-tree edge uv falls on or off the uv-path, and from
the current transition point this can be determined in constant time via the heavy-light
decomposition.

Recall that while Algorithm 8 helped demonstrate the approach of Algorithm 9, we
need only implement Algorithm 9, since Algorithm 9 finds the minimum cut of G that cuts
either 1 or 2 edges of T .

From this we get our final theorem, equivalent to the result of Karger [153].

Theorem 116. The minimum cut in a weighted undirected graph can be found inO(m log3 n)
time with high probability.

Proof. We first find Θ(logn) spanning trees by Algorithm 7. We then find the minimum
cuts that 2-respect each of these trees by Algorithm 9. By Lemmas 110 and 115, this finds
the minimum cut with high probability in O(m log3 n) time.
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Figure 8.1: Performance comparison of an O(m log4 n) implementation of our algorithm
with an O(n3) Stoer-Wagner [220] and O(n3 logn) Karger [150].

8.6 Implementation
We have implemented an O(m log4 n) version of our algorithm in C++3. Algorithm 6
together with an O(m logn) minimum spanning tree routine take about 100 lines of code,
Algorithm 7 takes about 200 lines, Algorithm 9 takes about 200 lines, and using an aug-
mented binary search tree as the data structure for Lemma 114 takes about 200 lines.
To the best of our knowledge, our implementation is the first to achieve near-linear time
complexity. We have tested it against an O(n3) implementation of the Stoer-Wagner
algorithm [220] and an O(n3 logn) implementation of Karger’s randomized contraction
algorithm [150]. Under favorable inputs, the runtime compares as in Figure 8.1.

Figure 8.1 demonstrates the near-linear growth in the running time of our algorithm.
Unfortunately, it does not appear our implementation is competitive compared to exist-
ing implementations [59]. The bottleneck is in obtaining the O(logn) spanning trees for
Algorithm 9, even when Algorithm 7 runs in O(m log3 n) time and Algorithm 9 runs in
O(m log4 n) time. The issue is the large constant factors due to the quadratic dependencies
on epsilons, seen in Algorithms 10 and 11. We have calculated that the number of calls to
the minimum spanning tree routine in our implementation can be as much as 8100 lnn lnm,

3Our implementation is available at: https://github.com/nalinbhardwaj/min-cut-paper.
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and that changing the choices of epsilons for Algorithms 6 and 7 does not yield significant
improvement.

If we replace Algorithm 6 with the more-complicated Gabow’s algorithm [103], we
can likely improve our implementation’s runtime. Further, a factor of about two can be
saved by finding c′ via an approximation algorithm [156]. However, a large constant factor
will remain due to the sampling procedure in Lemma 120, discussed in Section 8.8. All
known algorithms to compute weighted tree packings have dependence on c, the value
of the minimum cut, and Lemma 120 reduces the value of the minimum cut to at least
3(d+2)(lnn)/ε2, which in our algorithms manifests as a factor of 108(d+2) lnn. It appears
that for Karger’s approach to be made practical, this large constant factor will likely need
to be improved or heuristic approaches would need to be considered [59].

8.7 Conclusion
In this chapter, we have discussed a simplification to Karger’s original near-linear time
minimum cut algorithm [153]. In contrast to Karger’s original algorithm [153], finding
spanning trees that have a constant probability of 2-respecting the minimum cut is now
the more-complicated part of the algorithm and finding minimum cuts that 2-respect a tree
is relatively simpler. In actuality, both were complicated in Karger’s original algorithm,
however the work to find the tree packing was largely abstracted to previous publications.
The same can be said for many statements of Karger’s near-linear time algorithm [110,
182]. Our version, on the other hand, is self-contained: the only procedures outside of
Algorithms 6, 7, and 9 required to implement the full algorithm are a minimum spanning
tree subroutine and (optionally) a top tree data structure.

The main contribution of our algorithm is a new, simple procedure to find a minimum
cut that 2-respects a tree T in O(m log2 n) time. Karger advertises that the complexity of
his near-linear time algorithm is O(m log3 n) and thus his routine to find a minimum cut
that 2-respects a tree also takes O(m log2 n) time. However, he gives two small improve-
ments to the algorithm to reduce the overall runtime to O(m log2 n log(n2/m)/ log logn +
n log6 n). The first uses the fact that finding a 1-respecting cut can be done in linear time,
and the other is an improvement which reduces an O(logn) factor to an O(log(n2/m))
factor in the 2-respect routine. For our algorithm, the first improvement can be applied by
substituting our 1-respect algorithm with his. The second improvement can not be applied.
Thus, when m = Θ(n2), his algorithm is faster by an O(logn) factor. However, for this
case, Karger gives a different, simpler algorithm [153] which finds the global minimum cut
in O(n2 logn) time anyway.

There are three algorithms that are referred to as simple min-cut algorithms: the
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Stoer-Wagner algorithm [220] which runs in O(nm logn) time or O(nm + n2 logn) time
with a Fibonacci heap [99], Karger’s randomized contraction algorithm [150] which runs in
O(n2m logn) time, and the improvement to Karger’s algorithm by Karger and Stein [155]
which runs in O(n2 log3 n) time. In comparison to these, our approach is the least simple.
However, our O(m log3 n) runtime is significantly better. While the large constant factors
in our approach make this only relevant at large values of n, we hope the procedure
developed in this chapter can be used in conjunction with an optimized version of Karger’s
sampling technique to produce an asymptotically fast, practical minimum cut algorithm.

8.8 Karger’s Algorithm for Packing Spanning Trees
In this section we give the intuition and mathematics behind the spanning tree packing of
Karger’s algorithm.

8.8.1 Tree Packing

The basic idea of Karger’s near-linear time algorithm [153] is to exploit the following
combinatorial result. Recall that a tree packing of an undirected unweighted graph G is a
set of spanning trees such that each edge of G is contained in at most one spanning tree.
The weight of a tree packing is the number of trees in it.

Theorem 117 (Nash-Williams [188]). Any undirected unweighted multigraph with min-
imum cut c contains a tree packing of weight at least c/2.

Now consider a minimum cut and a tree packing given by Theorem 117. Each edge
of the minimum cut can only be present in at most one spanning tree. As there are c
edges of the minimum cut, this implies that the average spanning tree contains at most
c/(c/2) = 2 edges of the minimum cut. In other words, a spanning tree chosen at random
from a packing of Theorem 117 will 2-constrain the minimum cut with probability at least
1/2.

Suppose we are given a spanning tree T of G with each edge of T marked if it crosses
the minimum cut. The endpoints of any marked edge must fall on opposite sides of the
cut. Conversely, the endpoints of any unmarked edge must be on the same side of the cut.
It follows that if we know the edges of T that cross the minimum cut, we can determine
the vertex partition of the minimum cut and its total weight in G.

This gives the intuition behind Karger’s algorithm [153]. We sample spanning trees
from a tree packing of G and for each tree T , we find the minimum cut that 2-respects
T . Unfortunately, several obstacles need be overcome before this can be made into an
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efficient algorithm. For one, all currently known approaches of determining a tree packing
of Theorem 117 have runtime Ω(cm), which for large values of c is far more than the
runtime we seek. Further, Theorem 117 must be generalized to weighted graphs.

We first address the latter concern. Recall the definition of weighted tree packings given
in Section 8.3.

Lemma 118 (Karger [153]). Any undirected weighted graph with minimum cut c contains
a weighted tree packing of weight at least c/2.

Proof. For contradiction, suppose some graph G with minimum cut c and ε > 0 exist such
that G does not contain a weighted packing of weight (1 − ε)c/2 or greater.

Take G and approximate each edge ei of weight wi by a rational number ai/bi such that
ai/bi < wi and wi −ai/bi < ε. Multiply all edges by d =∏i bi and call the resulting graph G′.
Then by Theorem 117, when viewed as an unweighted multigraph, G′ has a tree packing
of weight at least (1 − ε)dc/2. If we weight each tree of the packing by 1/d, the packing
becomes a weighted packing of G of weight at least (1 − ε)c/2, a contradiction.

Note that for both Lemma 117 and Lemma 118, an upper bound of weight c also exists,
because every spanning tree in the packing must cross the minimum cut at least once.

To effectively use Lemma 118, we formally state the relationship between weighted
packings and trees that 2-constrain small cuts.

Lemma 119 (Karger [153]). Consider a weighted graph G and a weighted tree packing of
weight βc, where c is the weight of the minimum cut in G. Then given a cut of weight αc,
a fraction at least 1

2(3 − α/β) of the trees (by weight) 2-constrain the cut.

Proof. Note that every spanning tree must cross every cut. Let x denote the total weight
of trees with at least three edges crossing the cut and y the total weight of trees with one
or two edges crossing the cut. Then x + y = βc and 3x + y ≤ αc. Rearranging, we get
y ≥ 1

2(3βc − αc).

8.8.2 Random Sampling

In order to avoid the Ω(cm) complexity of finding a packing of weight c/2, we first apply
random sampling to G. Specifically, we use the following from Karger’s earlier work.

Lemma 120 (Karger [152]). Let p = 3(d + 2)(lnn)/(ε2γc) ≤ 1, where c is the weight of
the minimum cut of an unweighted multigraph G and γ ≤ 1, γ = Θ(1). Then if we sample
each edge of G independently with probability p, the resulting graph H has the following
properties with probability 1 − 1/nd.
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1. The minimum cut in H is of size within a (1 + ε) factor of cp = 3(d + 2)(lnn)/(γε2),
which is O(ε−2 logn).

2. A cut in G takes value within a factor (1+ε) of its expected value in H. In particular,
the minimum cut in G corresponds (under the same vertex partition) to a (1+ε)-times
minimum cut of H.

By picking ε to be a constant such as 1/6, Lemma 120 will allow us to reduce the size
of the minimum cut in H to O(logn). We can then run existing algorithms [205, 103] to
pack trees in H in Õ(m) time. Further, since the minimum cut of G corresponds to a
(1+ ε)-times minimum cut of H, we can still apply Lemma 119 on the sampled graph H so
that a tree randomly sampled from the packing has a constant probability of 2-constraining
the minimum cut in G.

There are still several issues to resolve. Lemma 120 applies to unweighted multigraphs
G, but our graph G can have non-negative real weights. The other issue is that the value γ
needs to be known ahead of time in order to apply the lemma. We first address the latter
issue.

Lemma 120 requires knowing a constant-factor underestimate c′ = γc for the minimum
cut c. In particular, without γ ≤ 1, property 2 of Lemma 120 is not guaranteed with high
probability, and if γ = o(1), the minimum cut of H will be of size ω(ε−2 logn) with high
probability. We may run a linear-time 3-approximation algorithm [175], with modifications
to work on weighted graphs [156], to find this approximation. This is simple to state, but
more difficult to implement.

A different approach is to start with a known upper bound U for c′. Karger states that
we can then halve this upper bound until “our algorithms succeed” [152]. This approach
is taken by the implementation of Chekuri et al. [59]. Unfortunately, it is not rigorous as
stated. Lemma 120 indicates that with a constant-factor underestimate c′ = γc for c, our
algorithm can proceed. However, it does not give a process for rejecting a guess c′ that
is not a constant-factor underestimate for c. We could try all powers of 2 for c′ within a
known lower and upper bound of the value of the minimum cut, and run our algorithms for
all possibilities. This is rigorous, but introduces an extra O(logn) factor in our runtimes,
assuming the range of c′ we try is polynomial in n. We instead show the following.

Lemma 121. Let p = 3(d + 2)(lnn)/(ε2γc) ≤ 1 as in Lemma 120, but with γ ≥ 6 and
ε ≤ 1/3. Then if we sample each edge of the unweighted multigraph G uniformly at random
with probability p, the resulting graph H has minimum cut of size less than (d+2)(lnn)/ε2
with probability at least 1 − 1/nd+2.

Proof. Consider the size of a minimum cut of G as a cut in H. Let X be a random variable
denoting this size. Then E [X] = cp. By a Chernoff bound, Pr [X ≥ (1 + δ)cp] ≤ e− 1

3
(cpδ) for
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δ ≥ 1. Let (1 + δ) = γ
3 . Then

Pr [X ≥ (d + 2)(lnn)/ε2] ≤ e− 1
3
(cp( γ

3
−1))

= e−(d+2)(lnn)γ−1ε−2( γ
3
−1))

= n− 1
3
(d+2)ε−2+(d+2)γ−1ε−2

≤ n− 1
6
(d+2)ε−2

< n−(d+2).

Therefore, the minimum cut in H has size less than (d + 2)(lnn)/ε−2 with probability at
least 1 − 1/nd+2.

Lemma 121 states that if our estimate c′ = γc satisfies γ ≥ 6, the minimum cut will be at
least a factor 3 smaller than 3(d+ 2)(lnn)/ε2 with high probability. Recall that with γ = 1
and therefore c′ = c, we expect the minimum cut in H to be within a factor (1 + ε) from
3(d + 2)(lnn)/ε2 with high probability. Lemma 121 gives us the necessary tool to reject c′
that are not a constant factor underestimate of c. We try a value for c′, and if the size of
the minimum cut in H is greater than (1+ε)−13(d+2)(lnn)/ε2, we know c′ < 6c. Therefore
we can decrease c′ by a factor of 6 and rerun the tree packing algorithm. The resulting
graph H must satisfy the conditions of Lemma 120, therefore the algorithm may proceed.
Since our tree packing algorithms determine the minimum cut up to constant factors, this
approach avoids the need of a different (or recursive!) minimum cut algorithm to run on
H.

We briefly remark on the choice of known upper bound U . If the edge weights are
polynomially bounded by the number of vertices, n, a simple upper bound of the sum of
weights of edges attached to any single vertex will do. If we do not consider this guarantee,
Karger shows [152] that the minimum weight edge w in a maximum spanning tree has
the property that the minimum cut must have weight between w and n2w. Thus, setting
U = n2w gives only O(logn) values of c′ to try regardless of edge weights. The choice of
an upper bound U is further discussed in [59].

We now return to the issue of real-value weights in Lemma 120. This was described as
a complication in [59], to which they substituted a heuristic method in order to achieve
practicality. The approach we have described thus far is amenable to small constant-factor
approximations. Suppose we replace G with a graph G′ such that each edge weight is first
normalized so the smallest weight edge has weight 1, then all edge weights are multiplied
by 100 and rounded to the nearest integer. Normalizing has no effect on the relative sizes
of cuts in G′. Rounding to the nearest integer when the smallest weight edge has weight
at least 100 has the effect that a cut of weight x will take on a new weight in range
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[.995x,1.005x]. Then the original minimum cut of G corresponds to an at most 201/199-
times minimum cut of G′. Now, G′ can be represented as an unweighted multigraph and
then sampled according to Lemma 120. In the resulting graph H, the minimum cut of G
corresponds to an at most 201/199 ⋅ 7/6-times minimum cut of H with the choice ε = 1/6.
By adjusting constants throughout the rest of our approach, this shows we can treat real
weighted graphs G correctly. The other issue is how to do so efficiently.

If we considerG′ as an unweighted multigraph, the number of edges ofG′ is proportional
to the weight of edges of G, which may be quite large. However, we may also consider
G′ as an integer-weighted graph, in which case we can sample each edge of G′ by drawing
from the binomial distribution with probability p and number of trials the weight of the
respective edge. There are many methods to sample from the binomial distribution. One
simple method that can be made efficient for our purposes is inverse transform sampling.
Let X denote a random variable sampled from the binomial distribution as described. In
inverse transform sampling, we draw a number u uniformly at random between 0 and
1, and then choose our sample x to be the largest such that P (X < x) ≤ u. Instead of
having to sample a number of times equal to the weight of an edge, we must only compute
the probabilities of the cumulative distribution function for the binomial distribution for
all possible values that may result in H. We can make this efficient with the following
observation. Say the weight of the minimum cut in H is ĉ. Then a tree packing of H has
value at most ĉ, and in particular for a given edge, any weight beyond ĉ is excess capacity
that cannot be used in the tree packing. It follows that capping the weight of any edge
of H to the maximum size of the minimum cut in H, thus O(logn), will have no impact
on the packing found. Thus, we must only compute O(logn) probabilities of the binomial
distribution per edge, which can be done in total O(logn) time per edge.

The final choice is to pick a tree packing algorithm. Karger gives two options. The
first is an algorithm by Gabow [103], which computes a c/2 packing. The second is a
more general approach by Plotkin-Shmoys-Tardos [205], which can find a packing a fac-
tor (1 + ε′) from the maximum packing, which has value in [c/2, c]. Karger describes the
latter approach as simpler, using only minimum spanning tree computations. Although
the paper [205] does not explicitly give a routine for packing spanning trees, such a proce-
dure is explicitly given in Thorup and Karger [226], with credit given to Plotkin-Shmoys-
Tardos [205] and Young [242]. This procedure also appears in Gawrychowski et al. [110].
We give the procedure in Algorithm 6 and state a version of Algorithm 6 with general
epsilon in Algorithm 10.

We now give the general form of Lemma 109 with proof.

Lemma 122 ([205, 226, 242]). Given 0 < ε < 1 and an undirected unweighted graph G
with m edges, n vertices, and minimum cut c, Algorithm 10 returns a weighted packing of
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Algorithm 10 Obtain a Packing of Weight at least (1 − ε)c/2 from a Graph G

Let G be a graph with m edges and n vertices.

1. Initialize `(e)← 0 for all edges e of G. Initialize multiset P ← ∅. Initialize W ← 0.

2. Repeat the following:

(a) Find a minimum spanning tree T with respect to `(⋅).
(b) Set `(e)← `(e) + ε2/(3 lnm) for all e ∈ T . If `(e) > 1, return W,P .

(c) Set W ←W + ε2/(3 lnm).
(d) Add T to P .

weight at least (1 − ε)c/2 in O(mc logn) time.

Proof. On each iteration, the weight of some tree is increased by ε2/(3 lnm). Since the
weight of the resulting packing is bounded by c, there are at most 3c lnm/ε2 = O(c logn)
iterations. The bottleneck in each iteration is the time to compute a minimum spanning
tree in G. With an O(m) time minimum spanning tree algorithm [154] our final time
complexity is O(mc logn); an alternative way to achieve this runtime when Algorithm 10
is used in Algorithm 11 was shown in Section 8.3. Correctness is given via Thorup and
Karger [226], Young [242], and Plotkin-Shmoys-Tardos [205].

Our full procedure for obtaining Θ(logn) spanning trees for the rest of the algorithm
is given in Algorithm 7. We give a version of Algorithm 7 with general epsilons in Algo-
rithm 11.
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Algorithm 11 Obtain Θ(logn) Spanning Trees for the 2-respect Algorithm

Let d denote the exponent in the probability of success 1 − 1/nd. Let ε1, ε2, ε3 > 0 be
constants of approximation such that f = 3/2 − (2+ε1

2−ε1 )(1 + ε2)(1 − ε3)
−1 > 0 and

(1 + ε2)−1(1 − ε3) > 2/3. Let b = 3(d + 2) lnn/ε22.

1. Form graph G′ from G by first normalizing the edge weights of G so the smallest
non-zero edge weight has weight 1, then multiplying each edge weight by ε−1

1 and
rounding to the nearest integer. Let U be an upper bound for the size of the
minimum cut of G′.

2. Initialize c′ ← U . Repeat the following:

(a) Construct H in the following way: for each edge e of G′, let e have weight in
H drawn from the binomial distribution with probability p = min(b/c′,1) and
number of trials the weight of e in G′. Cap the weight of any edge in H to at
most ⌈(1 + ε2)12b⌉.

(b) Run Algorithm 10 on H with approximation ε3, considering an edge of weight
w as w parallel edges. There are three cases:

i. If p = 1, set P to the packing returned and skip to step 3.
ii. If the returned packing is of weight 1

2(1 − ε3)(1 + ε2)−1b or greater, set
c′ ← c′/6 and repeat steps 2a and 2b, setting P to the packing returned
and then proceeding to step 3.

iii. Otherwise, repeat steps 2a and 2b with c′ ← c′/2.

3. Return ⌈−d lnn/ ln(1 − f)⌉ trees sampled uniformly at random proportional to their
weights from P .

We give the generalization of Lemma 110 for Algorithm 11 below.

Lemma 123. Algorithm 11 returns a collection of Θ(logn) spanning trees of G in time
O(m log3 n) such that the minimum cut of G 2-respects at least one tree in the collection
with high probability.

Proof. We first prove correctness. Consider general epsilons ε1, ε2, ε3 > 0, where in Al-
gorithm 7, ε1 = 1/100 is the real-weight approximation, ε2 = 1/6 is the approximation for
Lemmas 120 and 121, and ε3 = 1/5 is the approximation for Algorithm 6 to return a packing
of size (1 − ε3)c/2 or greater.
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Suppose for a particular c′ that c′ ≥ 6c, where c is the size of the minimum cut in G′.
Then by Lemma 121, H will have minimum cut of size less than b/3 = (d+ 2) lnn/ε22 with
high probability. A maximum tree packing of H will have weight at most ĉ, the weight of
the minimum cut in H, and thus the weight of the tree packing found by Algorithm 10 will
be at most b/3 < 1

2(1−ε3)(1+ε2)−1b because (1+ε2)−1(1−ε3) > 2/3. Therefore Algorithm 11
will proceed to the next iteration with c′ ← c′/2. Note that the overall probability of
failure from any of the O(logn) iterations of this step is at most O(logn ⋅n−(d+2)) ≤ n−d for
sufficiently large n.

Now suppose Algorithm 10 returns a tree packing of weight 1
2(1 − ε3)(1 + ε2)−1b or

greater. By the above, c′ < 6c with high probability. If c′ ≤ c, Lemma 120 says that the
weight of the minimum cut is at least (1+ ε2)−1b with high probability, unless p > 1. In the
latter case, this implies the weight of the minimum cut is O(logn) and there is no need
to apply sampling to G′. Consider the former case. The tree packing is of weight at least
(1 − ε3) times half the minimum cut. It follows that the tree packing will be of weight at
least 1

2(1 − ε3)(1 + ε2)−1b. The consequence of this is that if a tree packing of this weight
or greater is found in step 2b, in addition to the bound c′ < 6c, we also know c′ > c/2 with
high probability, since whenever c′ ≤ c, Lemma 120 says the packing will have weight at
least 1

2(1 − ε3)(1 + ε2)−1b, and we decrease c′ by a factor of 2 in each iteration. Therefore,
if we set c′ ← c′/6, then in the next iteration we will have c/12 < c′ < c.

Now consider the next iteration when the tree packing is returned. In sampling H, we
only preserve weights in H up to ⌈(1 + ε2) ⋅ 12b⌉. Since c′ > c/12, the expected size of the
minimum cut in H is at most 12b = 12 ⋅ 3(d + 2) lnn/ε22. Thus, with high probability, by
Lemma 120, the size of the minimum cut in H is at most (1 + ε2)12b, and as explained
previously, we can afford to remove the capacity of any edge beyond (1 + ε2)12b without
impacting the returned packing. Now by Lemma 119 with α ≤ 2+ε1

2−ε1 (1+ε2) and β ≥ 1
2(1−ε3),

a fraction of at least f = 3/2 − (2+ε1
2−ε1 )(1 + ε2)(1 − ε3)

−1 of the trees in the packing found
will 2-constrain the minimum cut of G. The probability that no tree in a sample of
size t 2-constrains the minimum cut is (1 − f)t. Solving for t in (1 − f)t = n−d yields
t = −d lnn/ ln(1 − f). Therefore with probability at least 1 − 1/nd, at least one tree in the
returned sample will 2-constrain the minimum cut.

Time complexity can be proven as follows. Sampling H can be done in O(m logn)
time, as explained previously. Algorithm 10 runs in O(m′ĉ log2 n) time using a textbook
O(m logn) minimum spanning tree algorithm, where ĉ is the value of the minimum cut
in H and m′ is the number of edges in H, where weighted edges are considered parallel
unit weight edges. Due to the sampling procedure, m′ = O(m logn). To reduce this
complexity, we can either use a linear time minimum spanning tree algorithm [154] or the
implementation trick given in Section 8.3. If we use the latter, we reduce the effective m′
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needed in Algorithm 10 to O(m). Further, in expectation, the value of the minimum cut ĉ
of H doubles in each iteration of Algorithm 11. A high probability statement can be made
via an argument similar to Lemma 121. Therefore the cost of running Algorithm 10 doubles
in each iteration, with the final cost being O(m log3 n), since ĉ = O(logn) by Lemma 120.
This is a geometric series, so the entire cost is O(m log3 n), and so Algorithm 11 runs in
O(m log3 n) time with high probability.

Since Algorithm 10 returns O(logn) trees, we could avoid sampling trees from the
weighted packing and instead return all of them. We keep the sampling in Algorithm 11
because, depending on the constants, sampling may require less trees. Further, the above
version of Algorithm 10 is more versatile in that the packing algorithm can be changed. Ob-
serve that the entire algorithm is still only correct with high probability, since we required
sampling G′ to construct graph H. Finally, returning all trees from Algorithm 10 does not
actually allow us to relax ε1, ε2, or ε3. The condition f = 3/2 − (1 + ε1)(1 + ε2)(1 − ε3)−1 > 0
is satisfied for all values of α and β that guarantee at least one tree in a weighted packing
of weight βc 2-constrains a cut of weight αc given by Lemma 119.

Algorithm 11 is slightly different than the approach taken by Karger [153]. In particular,
Karger sparsifies edges of H to have m′ = O(n logn) and replaces an O(m logn) time
minimum spanning tree computation in the tree packing algorithm with an O(m) one,
avoiding the implementation trick of Gawrychowski et al. [110]. This gives complexity
O(n log3 n) for finding the Θ(logn) spanning trees. However, since the remaining part of
the algorithm also takes O(m log3 n) time, we avoid these optimizations to simplify our
procedures.
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