A Simple Algorithm for
Minimum Cuts In Near-Linear
Time
Nalin Bhardwaj — University of California San Diego

Antonio Molina Lovett — Princeton University
Bryce Sandlund — University of Waterloo

The Weighted Minimum Cut Problem

Given a graph G on vertex set I/,
determine a nonempty vertex
subset S € V such that the total
weight of edges from StolVV \ Sis
minimized.

The Weighted Minimum Cut Problem

Given a graph G on vertex set I/,
determine a nonempty vertex
subset S € V such that the total
weight of edges from StolVV \ Sis
minimized.

The Weighted Minimum Cut Problem

Given a graph G on vertex set I/,
determine a nonempty vertex
subset S € V such that the total
weight of edges from StolVV \ Sis
minimized.

The weight of the minimum cut is
the total weight of the edges
crossing the cut.

Flow

Edge Contraction

History

Previous Work

('2’) flow computations

Result
0(n?) - flow = about 0(n>) with push-relabel.

Citation

Naive Attempt

Gomory-Hu tree

0(n) - flow = about 0(n*) with push-relabel.

Gomory & Hu, SIAM J.
Appl. Math ‘61

A faster algorithm for finding a
minimum cut in a directed graph

O(flow) = about 0(n3) with push-relabel.

Hao & Orlin, J. Algorithms
‘94

Stoer-Wagner

Compute arbitrary min s-t cut. Contract s and t.
Repeat. O(nm + n?logn) with Fibonacci heap,
O(nmlogn) with a binary heap.

Stoer & Wagner, J. ACM
‘97

Karger’s randomized contraction
algorithm

Pick a random edge and contract it. Repeat.
O(n?mlogn).

Karger, SODA ‘93

Karger-Stein algorithm

Branch Karger after % contractions. O(n?log3n).

Karger & Stein, J. ACM ‘96

Minimum cuts in near-linear
time

Sample edges, pack trees, find minimum cuts
that cut < 2 tree edges. 0(mlog> n).

Karger, J. ACM ‘00

Our Results

1. A simplification of Karger’s algorithm to find a smallest cut of ¢ that
2-respects (cuts < 2 edges of) a spanning tree T of G.

Our Results

1. A simplification of Karger’s algorithm to find a smallest cut of ¢ that
2-respects (cuts < 2 edges of) a spanning tree T of G.

Our Results

1. A simplification of Karger’s algorithm to find a smallest cut of ¢ that
2-respects (cuts < 2 edges of) a spanning tree T of G.

Our Results

1. A simplification of Karger’s algorithm to find a smallest cut of ¢ that
2-respects (cuts < 2 edges of) a spanning tree T of G.

Our Results

1. A simplification of Karger’s algorithm to find a smallest cut of ¢ that
2-respects (cuts < 2 edges of) a spanning tree T of G.

2. A self-contained version of Karger’s algorithm.

An implementation of our version of Karger’s algorithm.

Very Recent Work Result Citation
Minimum cut in O(m log® n) time Improvement of 2-respect algorithm. Gawrychowski et al., ICALP
O(mlog?n). 20
Weighted min-cut: sequential, cut- Improvement of 2-respect algorithm. Mukhopadhyay &
guery and streaming algorithms 0 (m log®n + 1 log® n) Nanongkai, STOC ‘20
loglogn 8 |

Karger’s Near-Linear Time Algorithm

Sample edges of (.
Pack trees in the sampled graph.
Sample trees from the packing.

N =

For each sampled tree T,
determine a smallest cut of G
that cuts at most two edges of T.

Tree Packing

Definition: A set of spanning trees,
each with an assigned weight, so that
the total weight of trees containing a
given edge is no greater than the
weight of that edge.

The weight of the packing is the total
weight of the trees in it.

Tree Packing

Definition: A set of spanning trees,
each with an assigned weight, so that
the total weight of trees containing a
given edge is no greater than the
weight of that edge.

The weight of the packing is the total
weight of the trees in it.

T, weight: 4
S 4

Tree Packing

Definition: A set of spanning trees,
each with an assigned weight, so that
the total weight of trees containinga 0.1
given edge is no greater than the
weight of that edge.

The weight of the packing is the total
weight of the trees in it.

Tree Packing

Definition: A set of spanning trees,
each with an assigned weight, so that
the total weight of trees containing a
given edge is no greater than the
weight of that edge.

The weight of the packing is the total
weight of the trees in it.

22

T, weight: 2
42

Tree Packing

Definition: A set of spanning trees,
each with an assigned weight, so that
the total weight of trees containing a
given edge is no greater than the
weight of that edge.

The weight of the packing is the total
weight of the trees in it.

Tree Packing

Definition: A set of spanning trees,
each with an assigned weight, so that
the total weight of trees containing a
given edge is no greater than the
weight of that edge.

The weight of the packing is the total
weight of the trees in it.

T, weight: 1
21

Tree Packing

Definition: A set of spanning trees,
each with an assigned weight, so that
the total weight of trees containinga 3.1
given edge is no greater than the
weight of that edge.

The weight of the packing is the total
weight of the trees in it. O

Tree Packing

Definition: A set of spanning trees,
each with an assigned weight, so that
the total weight of trees containing a
given edge is no greater than the
weight of that edge.

The weight of the packing is the total
weight of the trees in it.

T, weight: 1
11

Tree Packing

Definition: A set of spanning trees,
each with an assigned weight, so that
the total weight of trees containing a
given edge is no greater than the
weight of that edge.

The weight of the packing is the total
weight of the trees in it.

2.1

1.5

Tree Packing

Definition: A set of spanning trees,
each with an assigned weight, so that
the total weight of trees containing a
given edge is no greater than the
weight of that edge.

The weight of the packing is the total
weight of the trees in it.

Theorem: a packing of weight at least c/2
exists, where c is the weight of the min cut.

Tree Packing

Definition: A set of spanning trees,
each with an assigned weight, so that
the total weight of trees containing a
given edge is no greater than the
weight of that edge.

The weight of the packing is the total
weight of the trees in it.

Lemma: in a packing of
weight = ¢ /2, each tree
crosses the min cut at
most twice on average.

Theorem: a packing of weight at least c/2
exists, where c is the weight of the min cut.

Karger’s Near-Linear Time Algorithm

Sample edges of (.
Pack trees in the sampled graph.
Sample trees from the packing.

N =

For each sampled tree T,
determine a smallest cut of G
that cuts at most two edges of T.

Karger’s Near-Linear Time Algorithm

Sample edges of (.
Pack trees in the sampled graph.
Sample trees from the packing.

= W e

For each sampled tree T,
determine a smallest cut of G
that cuts at most two edges of T..

Can reduce to step 4.

1-Respect Algorithm

Given spanning tree T of a
graph G, find a smallest cut
of ¢ that cuts one edge of T.

-— .
- =~

1-Respect Algorithm , ~

Given spanning tree T of a
graph G, find a smallest cut
of ¢ that cuts one edge of T.

Tree edges

=

1-Respect Algorithm

When is a non-tree edge uv cut?

1-Respect Algorithm

When is a non-tree edge uv cut?

Non-tree edge uv is cut iff the cut in
(cuts an edge on the uv-pathinT.

1-Respect Algorithm

How to compute the size of all
n — 1 cuts?

ldea: iterate an edge ¢ through
T, keeping track of non-tree
edges that cross a cut at

-— -

i SR

-—
-
~y

1-Respect Algorithm

How to compute the size of all
n — 1 cuts?

ldea: iterate an edge ¢ through
T, keeping track of non-tree
edges that cross a cut at

1-Respect Algorithm

How to compute the size of all
n — 1 cuts?

ldea: iterate an edge ¢ through
T, keeping track of non-tree
edges that cross a cut at

1-Respect Algorithm

How to compute the size of all
n — 1 cuts?

ldea: iterate an edge ¢ through
T, keeping track of non-tree
edges that cross a cut at

1-Respect Algorithm

How to compute the size of all
n — 1 cuts?

ldea: iterate an edge ¢ through
T, keeping track of non-tree
edges that cross a cut at

1-Respect Algorithm

How to compute the size of all
n — 1 cuts?

ldea: iterate an edge ¢ through
T, keeping track of non-tree
edges that cross a cut at

1-Respect Algorithm

How to compute the size of all
n — 1 cuts?

ldea: iterate an edge ¢ through
T, keeping track of non-tree
edges that cross a cut at

1-Respect Algorithm

How to compute the size of all
n — 1 cuts?

ldea: iterate an edge ¢ through
T, keeping track of non-tree
edges that cross a cut at

1-Respect Algorithm

How to compute the size of all
n — 1 cuts?

ldea: iterate an edge ¢ through
T, keeping track of non-tree
edges that cross a cut at

-— -

1-Respect Algorithm e

How to compute the size of all r(
n — 1 cuts?

ldea: iterate an edge ¢ through

T, keeping track of non-tree ® (> ®
edges that cross a cut at e. ‘

Is there an order of edges ¢ that results in el

non-tree edges transitioning on and off
the current cut a small number of times?

i SR

-—
L
~y

Heavy-Light Decomposition

1. Split T into root-to-leaf paths.

2. Continue the path to the child
with the most descendants.

- - oy
- ~~

e =

Heavy-Light Decomposition

1. Split T into root-to-leaf paths.

2. Continue the path to the child
with the most descendants.

Any root-to-leaf path requires at \
most O(logn) color changes.

- -
’—

‘——_‘

—
~~

1-Respect Algorithm

1. Iterate edge ¢ in heavy-light
decomposition order.

2. Keep track of non-tree edges uv
that cross a cut at

Non-tree edge uv will transition on ‘
or off the current cut O (logn) times. ' O O

‘——_‘

= O(mlogn) time.

Current Cut:
Minimum Cut:

1-Respect Algorithm

1. Iterate edge ¢ in heavy-light
decomposition order.

2. Keep track of non-tree edges uv
that cross a cut at

Non-tree edge uv will transition on
or off the current cut O (logn) times.

= O(mlogn) time.

Current Cut: 4
Minimum Cut: 4

1-Respect Algorithm

1. Iterate edge ¢ in heavy-light
decomposition order.

2. Keep track of non-tree edges uv
that cross a cut at

Non-tree edge uv will transition on
or off the current cut O (logn) times.

= O(mlogn) time.

Current Cut: 2
Minimum Cut: 2

1-Respect Algorithm

1. Iterate edge ¢ in heavy-light
decomposition order.

2. Keep track of non-tree edges uv
that cross a cut at

Non-tree edge uv will transition on
or off the current cut O (logn) times.

= O(mlogn) time.

Current Cut: 2
Minimum Cut: 2

1-Respect Algorithm

1. Iterate edge ¢ in heavy-light
decomposition order.

2. Keep track of non-tree edges uv
that cross a cut at

Non-tree edge uv will transition on
or off the current cut O (logn) times.

= O(mlogn) time.

Current Cut: 1
Minimum Cut: 1

1-Respect Algorithm

1. Iterate edge ¢ in heavy-light
decomposition order.

2. Keep track of non-tree edges uv
that cross a cut at

Non-tree edge uv will transition on
or off the current cut O (logn) times.

= O(mlogn) time.

Current Cut: 1
Minimum Cut: 1

1-Respect Algorithm

1. Iterate edge ¢ in heavy-light
decomposition order.

2. Keep track of non-tree edges uv
that cross a cut at

Non-tree edge uv will transition on
or off the current cut O (logn) times.

= O(mlogn) time.

Current Cut: 2
Minimum Cut: 1

1-Respect Algorithm

1. Iterate edge ¢ in heavy-light
decomposition order.

2. Keep track of non-tree edges uv
that cross a cut at

Non-tree edge uv will transition on
or off the current cut O (logn) times.

= O(mlogn) time.

Current Cut: 2
Minimum Cut: 1

1-Respect Algorithm

1. Iterate edge ¢ in heavy-light
decomposition order.

2. Keep track of non-tree edges uv
that cross a cut at

Non-tree edge uv will transition on
or off the current cut O (logn) times.

= O(mlogn) time.

Current Cut: 2
Minimum Cut: 1

1-Respect Algorithm

1. Iterate edge ¢ in heavy-light
decomposition order.

2. Keep track of non-tree edges uv
that cross a cut at

Non-tree edge uv will transition on
or off the current cut O (logn) times.

= O(mlogn) time.

Current Cut: 1
Minimum Cut: 1

1-Respect Algorithm

1. Iterate edge ¢ in heavy-light
decomposition order.

2. Keep track of non-tree edges uv
that cross a cut at

Non-tree edge uv will transition on
or off the current cut O (logn) times.

= O(mlogn) time.

Current Cut: 2
Minimum Cut: 1

1-Respect Algorithm

1. Iterate edge ¢ in heavy-light
decomposition order.

2. Keep track of non-tree edges uv
that cross a cut at

Non-tree edge uv will transition on
or off the current cut O (logn) times.

= O(mlogn) time.

Current Cut: 4
Minimum Cut: 1

1-Respect Algorithm

1. Iterate edge ¢ in heavy-light
decomposition order.

2. Keep track of non-tree edges uv
that cross a cut at

Non-tree edge uv will transition on
or off the current cut O (logn) times.

= O(mlogn) time.

Current Cut: 1
Minimum Cut: 1

1-Respect Algorithm

1. Iterate edge ¢ in heavy-light
decomposition order.

2. Keep track of non-tree edges uv
that cross a cut at

Non-tree edge uv will transition on
or off the current cut O (logn) times.

= O(mlogn) time.

Current Cut: 1
Minimum Cut: 1

1-Respect Algorithm

1. Iterate edge ¢ in heavy-light
decomposition order.

2. Keep track of non-tree edges uv
that cross a cut at

Non-tree edge uv will transition on
or off the current cut O (logn) times. ‘\

= O(mlogn) time. el O

Current Cut: 1
Minimum Cut: 1

1-Respect Algorithm

1. Iterate edge ¢ in heavy-light
decomposition order.

2. Keep track of non-tree edges uv
that cross a cut at

Non-tree edge uv will transition on
or off the current cut O(logn) times. A N

= O(mlogn) time. e O

Current Cut: 1
Minimum Cut: 1

1-Respect Algorithm

1. Iterate edge ¢ in heavy-light
decomposition order.

2. Keep track of non-tree edges uv
that cross a cut at

Non-tree edge uv will transition on
or off the current cut O (logn) times.

= O(mlogn) time.

Current Cut: 3
Minimum Cut: 1

1-Respect Algorithm

1. Iterate edge ¢ in heavy-light
decomposition order.

2. Keep track of non-tree edges uv
that cross a cut at

Non-tree edge uv will transition on
or off the current cut O (logn) times.

= O(mlogn) time.

Current Cut: 2
Minimum Cut: 1

1-Respect Algorithm

1. Iterate edge ¢ in heavy-light
decomposition order.

2. Keep track of non-tree edges uv
that cross a cut at

Non-tree edge uv will transition on
or off the current cut O (logn) times.

= O(mlogn) time.

Minimum Cut: 1

1-Respect Algorithm

1. Iterate edge ¢ in heavy-light
decomposition order.

2. Keep track of non-tree edges uv
that cross a cut at

Non-tree edge uv will transition on
or off the current cut O (logn) times.

= O(mlogn) time.

2-Respect Algorithm

Given spanning tree T of a graph G,
find a smallest cut of ¢ that cuts two

edges of T.

2-Respect Algorithm

When two edges of T are cut, when
does a non-tree edge uv cross the cut?

2-Respect Algorithm

When two edges of T are cut, when
does a non-tree edge uv cross the cut?

Non-tree edge uv is cut iff the cut in G
cuts exactly one edge on the uv-path
inT.

2-Respect Algorithm :

When two edges of T are cut, when
does a non-tree edge uv cross the cut?

Non-tree edge uv is cut iff the cut in G

cuts exactly one edge on the uv-path
inT.

-

.----—

2-Respect Algorithm

How can we leverage our 1-respect
strategy for cuts that cut two edges
of T?

We cannot spend Q(n?) time
checking all cuts.

Top Tree Data Structure

Operations over a weighted tree T':

* PathAdd(u,v,w) := add weight w to all edges on the uv-pathinT.

* NonPathAdd(u,v,w) := add weight w to all edges not on the uv-pathinT.
* QueryMinimum() := Return the minimum weight edge in T.

O

O

All operations take
O(logn) time.

ldea

Call the two tree edges that we cut
and f. If we fix ¢, we can determine

result in non-tree edge uv
crossing the cut.

ldea

Call the two tree edges that we cut Q
and f. If we fix ¢, we can determine

result in non-tree edge uv O O OO

crossing the cut.

* If ¢ is on the uv-path, any f off the ‘

uv-path cut uv. X
v O OWw O

ldea O

Call the two tree edges that we cut
and f. If we fix ¢, we can determine

result in non-tree edge uv O
crossing the cut.

* If ¢ is on the uv-path, any f off the ‘
uv-path cut uv. X

* If ¢ is off the uv-path, any f on the .
uv-path cut uv. ~.

i S

Use top tree to find best f!

2-Respect Algorithm

1. Iterate fixed tree-edge ¢ in heavy-
light decomposition order.

2. Keep track of the cost of cutting
any other edge f in a top tree.

3. After ¢ is moved and the top tree
updated, query for best f.

= 0(mlog?n) time.

Minimum Cut:

2-Respect Algorithm

1. Iterate fixed tree-edge ¢ in heavy-
light decomposition order.

2. Keep track of the cost of cutting
any other edge f in a top tree.

3. After ¢ is moved and the top tree
updated, query for best f.

= 0(mlog?n) time.

Minimum Cut: 2

2-Respect Algorithm

1. Iterate fixed tree-edge ¢ in heavy-
light decomposition order.

2. Keep track of the cost of cutting
any other edge f in a top tree.

3. After ¢ is moved and the top tree
updated, query for best f.

= 0(mlog?n) time.

Minimum Cut: 2

2-Respect Algorithm

1. Iterate fixed tree-edge ¢ in heavy-
light decomposition order.

2. Keep track of the cost of cutting
any other edge f in a top tree.

3. After ¢ is moved and the top tree
updated, query for best f.

= 0(mlog?n) time.

Minimum Cut: 2

2-Respect Algorithm

1. Iterate fixed tree-edge ¢ in heavy-
light decomposition order.

2. Keep track of the cost of cutting
any other edge f in a top tree.

3. After ¢ is moved and the top tree
updated, query for best f.

= 0(mlog?n) time.

Minimum Cut: 2

2-Respect Algorithm

1. Iterate fixed tree-edge ¢ in heavy-
light decomposition order.

2. Keep track of the cost of cutting
any other edge f in a top tree.

3. After ¢ is moved and the top tree
updated, query for best f.

= 0(mlog?n) time.

Minimum Cut: 2

2-Respect Algorithm

1. Iterate fixed tree-edge ¢ in heavy-
light decomposition order.

2. Keep track of the cost of cutting
any other edge f in a top tree.

3. After ¢ is moved and the top tree
updated, query for best f.

= 0(mlog?n) time.

Minimum Cut: 2

2-Respect Algorithm

1. Iterate fixed tree-edge ¢ in heavy-
light decomposition order.

2. Keep track of the cost of cutting
any other edge f in a top tree.

3. After ¢ is moved and the top tree
updated, query for best f.

= 0(mlog?n) time.

Minimum Cut: 2

2-Respect Algorithm

1. Iterate fixed tree-edge ¢ in heavy-
light decomposition order.

2. Keep track of the cost of cutting
any other edge f in a top tree.

3. After ¢ is moved and the top tree
updated, query for best f.

= 0(mlog?n) time.

Implementation

e Available at: https://github.com/nalinbhardwaij/min-cut-paper.

* About ~200 lines of code for the 2-respect algorithm.

Performance Comparison

| | —e— Our Algorithm

300 + | | —— Stoer-Wagner [39]
" —— Karger [20]
<
=
S
O
£ 200 -
E=
<]
E
=

100
z

0 \ \ \ I
1,000 1,500 2,000 2,500

n

Figure 1 Performance comparison of an O(mlog* n) implementation of our algorithm with an
O(n?) Stoer-Wagner [39] and O(n®logn) Karger [20].

https://github.com/nalinbhardwaj/min-cut-paper

Thanks!

Questions?

