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The Weighted Minimum Cut Problem

Given a graph G on vertex set I/,
determine a nonempty vertex
subset S € V such that the total
weight of edges from StolVV \ Sis
minimized.

The weight of the minimum cut is
the total weight of the edges
crossing the cut.




Flow

Edge Contraction

History

Previous Work

('2’) flow computations

Result
0(n?) - flow = about 0(n>) with push-relabel.

Citation

Naive Attempt

Gomory-Hu tree

0(n) - flow = about 0(n*) with push-relabel.

Gomory & Hu, SIAM J.
Appl. Math ‘61

A faster algorithm for finding a
minimum cut in a directed graph

O(flow) = about 0(n3) with push-relabel.

Hao & Orlin, J. Algorithms
‘94

Stoer-Wagner

Compute arbitrary min s-t cut. Contract s and t.
Repeat. O(nm + n?logn) with Fibonacci heap,
O(nmlogn) with a binary heap.

Stoer & Wagner, J. ACM
‘97

Karger’s randomized contraction
algorithm

Pick a random edge and contract it. Repeat.
O(n?mlogn).

Karger, SODA ‘93

Karger-Stein algorithm

Branch Karger after % contractions. O(n?log3n).

Karger & Stein, J. ACM ‘96

Minimum cuts in near-linear
time

Sample edges, pack trees, find minimum cuts
that cut < 2 tree edges. 0(mlog> n).

Karger, J. ACM ‘00
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Our Results

1. A simplification of Karger’s algorithm to find a smallest cut of ¢ that
2-respects (cuts < 2 edges of) a spanning tree T of G.

2. A self-contained version of Karger’s algorithm.

An implementation of our version of Karger’s algorithm.

Very Recent Work Result Citation
Minimum cut in O(m log® n) time Improvement of 2-respect algorithm. Gawrychowski et al., ICALP
O(mlog?n). 20
Weighted min-cut: sequential, cut- Improvement of 2-respect algorithm. Mukhopadhyay &
guery and streaming algorithms 0 (m log®n + 1 log® n) Nanongkai, STOC ‘20
loglogn 8 |




Karger’s Near-Linear Time Algorithm

Sample edges of (.
Pack trees in the sampled graph.
Sample trees from the packing.

N =

For each sampled tree T,
determine a smallest cut of G
that cuts at most two edges of T.
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each with an assigned weight, so that
the total weight of trees containing a
given edge is no greater than the
weight of that edge.

The weight of the packing is the total
weight of the trees in it.
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Tree Packing

Definition: A set of spanning trees,
each with an assigned weight, so that
the total weight of trees containing a
given edge is no greater than the
weight of that edge.

The weight of the packing is the total
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Tree Packing

Definition: A set of spanning trees,
each with an assigned weight, so that
the total weight of trees containing a
given edge is no greater than the
weight of that edge.

The weight of the packing is the total
weight of the trees in it.

2.1
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Tree Packing

Definition: A set of spanning trees,
each with an assigned weight, so that
the total weight of trees containing a
given edge is no greater than the
weight of that edge.

The weight of the packing is the total
weight of the trees in it.

Theorem: a packing of weight at least c/2
exists, where c is the weight of the min cut.



Tree Packing

Definition: A set of spanning trees,
each with an assigned weight, so that
the total weight of trees containing a
given edge is no greater than the
weight of that edge.

The weight of the packing is the total
weight of the trees in it.

Lemma: in a packing of
weight = ¢ /2, each tree
crosses the min cut at
most twice on average.

Theorem: a packing of weight at least c/2
exists, where c is the weight of the min cut.



Karger’s Near-Linear Time Algorithm

Sample edges of (.
Pack trees in the sampled graph.
Sample trees from the packing.

N =

For each sampled tree T,
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Karger’s Near-Linear Time Algorithm

Sample edges of (.
Pack trees in the sampled graph.
Sample trees from the packing.

= W e

For each sampled tree T,
determine a smallest cut of G
that cuts at most two edges of T..

Can reduce to step 4.



1-Respect Algorithm

Given spanning tree T of a
graph G, find a smallest cut
of ¢ that cuts one edge of T.
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1-Respect Algorithm , ~

Given spanning tree T of a
graph G, find a smallest cut
of ¢ that cuts one edge of T.

Tree edges

=



1-Respect Algorithm

When is a non-tree edge uv cut?




1-Respect Algorithm

When is a non-tree edge uv cut?

Non-tree edge uv is cut iff the cut in
( cuts an edge on the uv-pathinT.




1-Respect Algorithm

How to compute the size of all
n — 1 cuts?

ldea: iterate an edge ¢ through
T, keeping track of non-tree
edges that cross a cut at
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1-Respect Algorithm e

How to compute the size of all r(
n — 1 cuts?

ldea: iterate an edge ¢ through

T, keeping track of non-tree ® (> ®
edges that cross a cut at e. ‘

Is there an order of edges ¢ that results in el

non-tree edges transitioning on and off
the current cut a small number of times?
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Heavy-Light Decomposition

1. Split T into root-to-leaf paths.

2. Continue the path to the child
with the most descendants.
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Heavy-Light Decomposition

1. Split T into root-to-leaf paths.

2. Continue the path to the child
with the most descendants.

Any root-to-leaf path requires at \
most O(logn) color changes.
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1-Respect Algorithm

1. Iterate edge ¢ in heavy-light
decomposition order.

2. Keep track of non-tree edges uv
that cross a cut at

Non-tree edge uv will transition on ‘
or off the current cut O (logn) times. ' O O

‘——_‘

= O(mlogn) time.
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Minimum Cut:
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Minimum Cut: 1

1-Respect Algorithm

1. Iterate edge ¢ in heavy-light
decomposition order.

2. Keep track of non-tree edges uv
that cross a cut at

Non-tree edge uv will transition on
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2-Respect Algorithm

Given spanning tree T of a graph G,
find a smallest cut of ¢ that cuts two

edges of T.
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2-Respect Algorithm :

When two edges of T are cut, when
does a non-tree edge uv cross the cut?

Non-tree edge uv is cut iff the cut in G

cuts exactly one edge on the uv-path
inT.
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2-Respect Algorithm

How can we leverage our 1-respect
strategy for cuts that cut two edges
of T?

We cannot spend Q(n?) time
checking all cuts.




Top Tree Data Structure

Operations over a weighted tree T':

* PathAdd(u,v,w) := add weight w to all edges on the uv-pathinT.

* NonPathAdd(u,v,w) := add weight w to all edges not on the uv-pathinT.
* QueryMinimum() := Return the minimum weight edge in T.

O

O

All operations take
O(logn) time.




ldea

Call the two tree edges that we cut
and f. If we fix ¢, we can determine

result in non-tree edge uv
crossing the cut.
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ldea O

Call the two tree edges that we cut
and f. If we fix ¢, we can determine

result in non-tree edge uv O
crossing the cut.

* If ¢ is on the uv-path, any f off the ‘
uv-path cut uv. X

* If ¢ is off the uv-path, any f on the .
uv-path cut uv. ~.

i S

Use top tree to find best f!



2-Respect Algorithm

1. Iterate fixed tree-edge ¢ in heavy-
light decomposition order.

2. Keep track of the cost of cutting
any other edge f in a top tree.

3. After ¢ is moved and the top tree
updated, query for best f.

= 0(mlog?n) time.
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Implementation

e Available at: https://github.com/nalinbhardwaij/min-cut-paper.

* About ~200 lines of code for the 2-respect algorithm.

Performance Comparison
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Figure 1 Performance comparison of an O(mlog* n) implementation of our algorithm with an
O(n?) Stoer-Wagner [39] and O(n®logn) Karger [20].


https://github.com/nalinbhardwaj/min-cut-paper

Thanks!

Questions?



