
A Simple Algorithm for
Minimum Cuts in Near-Linear

Time
Nalin Bhardwaj – University of California San Diego

Antonio Molina Lovett – Princeton University
Bryce Sandlund – University of Waterloo

The Weighted Minimum Cut Problem

Given a graph 𝐺 on vertex set 𝑉,
determine a nonempty vertex
subset 𝑆 ⊆ 𝑉 such that the total
weight of edges from 𝑆 to 𝑉 ∖ 𝑆 is
minimized.

The Weighted Minimum Cut Problem

Given a graph 𝐺 on vertex set 𝑉,
determine a nonempty vertex
subset 𝑆 ⊆ 𝑉 such that the total
weight of edges from 𝑆 to 𝑉 ∖ 𝑆 is
minimized.

The Weighted Minimum Cut Problem

Given a graph 𝐺 on vertex set 𝑉,
determine a nonempty vertex
subset 𝑆 ⊆ 𝑉 such that the total
weight of edges from 𝑆 to 𝑉 ∖ 𝑆 is
minimized.

The weight of the minimum cut is
the total weight of the edges
crossing the cut.

History
Previous Work Result Citation
!
" flow computations 𝑂 𝑛" ⋅ 𝑓𝑙𝑜𝑤 = about 𝑂(𝑛#) with push-relabel. Naïve Attempt

Gomory-Hu tree 𝑂 𝑛 ⋅ 𝑓𝑙𝑜𝑤 = about 𝑂(𝑛$) with push-relabel. Gomory & Hu, SIAM J.
Appl. Math ‘61

A faster algorithm for finding a
minimum cut in a directed graph

𝑂 𝑓𝑙𝑜𝑤 = about 𝑂(𝑛%) with push-relabel. Hao & Orlin, J. Algorithms
‘94

Stoer-Wagner Compute arbitrary min 𝑠-𝑡 cut. Contract 𝑠 and 𝑡.
Repeat. 𝑂(𝑛𝑚 + n"log 𝑛) with Fibonacci heap,
𝑂(𝑛𝑚 log 𝑛) with a binary heap.

Stoer & Wagner, J. ACM
‘97

Karger’s randomized contraction
algorithm

Pick a random edge and contract it. Repeat.
𝑂(𝑛"𝑚 log 𝑛).

Karger, SODA ‘93

Karger-Stein algorithm Branch Karger after !
"

contractions. 𝑂(𝑛"log%𝑛). Karger & Stein, J. ACM ‘96

Minimum cuts in near-linear
time

Sample edges, pack trees, find minimum cuts
that cut ≤ 2 tree edges. 𝑂(𝑚 log% 𝑛).

Karger, J. ACM ‘00

Fl
ow

Ed
ge

 C
on

tr
ac

tio
n

Our Results

1. A simplification of Karger’s algorithm to find a smallest cut of 𝐺 that
2-respects (cuts ≤ 2 edges of) a spanning tree 𝑇 of 𝐺.

Our Results

1. A simplification of Karger’s algorithm to find a smallest cut of 𝐺 that
2-respects (cuts ≤ 2 edges of) a spanning tree 𝑇 of 𝐺.

Our Results

1. A simplification of Karger’s algorithm to find a smallest cut of 𝐺 that
2-respects (cuts ≤ 2 edges of) a spanning tree 𝑇 of 𝐺.

Our Results

1. A simplification of Karger’s algorithm to find a smallest cut of 𝐺 that
2-respects (cuts ≤ 2 edges of) a spanning tree 𝑇 of 𝐺.

Our Results

Very Recent Work Result Citation

Minimum cut in 𝑂(𝑚 log" 𝑛) time Improvement of 2-respect algorithm.
𝑂(𝑚 log" 𝑛) .

Gawrychowski et al., ICALP
‘20

Weighted min-cut: sequential, cut-
query and streaming algorithms

Improvement of 2-respect algorithm.

𝑂 𝑚 &'(! !
&'(&'(!

+ 𝑛 log) 𝑛 .

Mukhopadhyay &
Nanongkai, STOC ‘20

1. A simplification of Karger’s algorithm to find a smallest cut of 𝐺 that
2-respects (cuts ≤ 2 edges of) a spanning tree 𝑇 of 𝐺.

2. A self-contained version of Karger’s algorithm.
3. An implementation of our version of Karger’s algorithm.

Karger’s Near-Linear Time Algorithm

1. Sample edges of 𝐺.
2. Pack trees in the sampled graph.
3. Sample trees from the packing.
4. For each sampled tree 𝑇,

determine a smallest cut of 𝐺
that cuts at most two edges of 𝑇.

Tree Packing

Definition: A set of spanning trees,
each with an assigned weight, so that
the total weight of trees containing a
given edge is no greater than the
weight of that edge.

The weight of the packing is the total
weight of the trees in it.

Tree Packing

Definition: A set of spanning trees,
each with an assigned weight, so that
the total weight of trees containing a
given edge is no greater than the
weight of that edge.

The weight of the packing is the total
weight of the trees in it.

Tree Packing

Definition: A set of spanning trees,
each with an assigned weight, so that
the total weight of trees containing a
given edge is no greater than the
weight of that edge.

The weight of the packing is the total
weight of the trees in it.

Tree Packing

Definition: A set of spanning trees,
each with an assigned weight, so that
the total weight of trees containing a
given edge is no greater than the
weight of that edge.

The weight of the packing is the total
weight of the trees in it.

Tree Packing

Definition: A set of spanning trees,
each with an assigned weight, so that
the total weight of trees containing a
given edge is no greater than the
weight of that edge.

The weight of the packing is the total
weight of the trees in it.

Tree Packing

Definition: A set of spanning trees,
each with an assigned weight, so that
the total weight of trees containing a
given edge is no greater than the
weight of that edge.

The weight of the packing is the total
weight of the trees in it.

Tree Packing

Definition: A set of spanning trees,
each with an assigned weight, so that
the total weight of trees containing a
given edge is no greater than the
weight of that edge.

The weight of the packing is the total
weight of the trees in it.

Tree Packing

Definition: A set of spanning trees,
each with an assigned weight, so that
the total weight of trees containing a
given edge is no greater than the
weight of that edge.

The weight of the packing is the total
weight of the trees in it.

Tree Packing

Definition: A set of spanning trees,
each with an assigned weight, so that
the total weight of trees containing a
given edge is no greater than the
weight of that edge.

The weight of the packing is the total
weight of the trees in it.

Tree Packing

Definition: A set of spanning trees,
each with an assigned weight, so that
the total weight of trees containing a
given edge is no greater than the
weight of that edge.

The weight of the packing is the total
weight of the trees in it.

Theorem: a packing of weight at least c/2
exists, where 𝑐 is the weight of the min cut.

Tree Packing

Definition: A set of spanning trees,
each with an assigned weight, so that
the total weight of trees containing a
given edge is no greater than the
weight of that edge.

The weight of the packing is the total
weight of the trees in it.

Theorem: a packing of weight at least c/2
exists, where 𝑐 is the weight of the min cut.

Lemma: in a packing of
weight ≥ 𝑐/2, each tree
crosses the min cut at
most twice on average.

Karger’s Near-Linear Time Algorithm

1. Sample edges of 𝐺.
2. Pack trees in the sampled graph.
3. Sample trees from the packing.
4. For each sampled tree 𝑇,

determine a smallest cut of 𝐺
that cuts at most two edges of 𝑇.

Karger’s Near-Linear Time Algorithm

1. Sample edges of 𝐺.
2. Pack trees in the sampled graph.
3. Sample trees from the packing.
4. For each sampled tree 𝑇,

determine a smallest cut of 𝐺
that cuts at most two edges of 𝑇.

Can reduce to step 4.

1-Respect Algorithm

Given spanning tree 𝑇 of a
graph 𝐺, find a smallest cut
of 𝐺 that cuts one edge of 𝑇.

1-Respect Algorithm

Given spanning tree 𝑇 of a
graph 𝐺, find a smallest cut
of 𝐺 that cuts one edge of 𝑇.

1-Respect Algorithm

When is a non-tree edge 𝑢𝑣 cut?

1-Respect Algorithm

When is a non-tree edge 𝑢𝑣 cut?

Non-tree edge 𝑢𝑣 is cut iff the cut in
𝐺 cuts an edge on the 𝑢𝑣-path in 𝑇.

1-Respect Algorithm

How to compute the size of all
𝑛 − 1 cuts?

Idea: iterate an edge 𝑒 through
𝑇, keeping track of non-tree
edges that cross a cut at 𝑒.

1-Respect Algorithm

How to compute the size of all
𝑛 − 1 cuts?

Idea: iterate an edge 𝑒 through
𝑇, keeping track of non-tree
edges that cross a cut at 𝑒.

1-Respect Algorithm

How to compute the size of all
𝑛 − 1 cuts?

Idea: iterate an edge 𝑒 through
𝑇, keeping track of non-tree
edges that cross a cut at 𝑒.

1-Respect Algorithm

How to compute the size of all
𝑛 − 1 cuts?

Idea: iterate an edge 𝑒 through
𝑇, keeping track of non-tree
edges that cross a cut at 𝑒.

1-Respect Algorithm

How to compute the size of all
𝑛 − 1 cuts?

Idea: iterate an edge 𝑒 through
𝑇, keeping track of non-tree
edges that cross a cut at 𝑒.

1-Respect Algorithm

How to compute the size of all
𝑛 − 1 cuts?

Idea: iterate an edge 𝑒 through
𝑇, keeping track of non-tree
edges that cross a cut at 𝑒.

1-Respect Algorithm

How to compute the size of all
𝑛 − 1 cuts?

Idea: iterate an edge 𝑒 through
𝑇, keeping track of non-tree
edges that cross a cut at 𝑒.

1-Respect Algorithm

How to compute the size of all
𝑛 − 1 cuts?

Idea: iterate an edge 𝑒 through
𝑇, keeping track of non-tree
edges that cross a cut at 𝑒.

1-Respect Algorithm

How to compute the size of all
𝑛 − 1 cuts?

Idea: iterate an edge 𝑒 through
𝑇, keeping track of non-tree
edges that cross a cut at 𝑒.

1-Respect Algorithm

How to compute the size of all
𝑛 − 1 cuts?

Idea: iterate an edge 𝑒 through
𝑇, keeping track of non-tree
edges that cross a cut at 𝑒.

Is there an order of edges 𝑒 that results in
non-tree edges transitioning on and off
the current cut a small number of times?

Heavy-Light Decomposition

1. Split 𝑇 into root-to-leaf paths.
2. Continue the path to the child

with the most descendants.

Heavy-Light Decomposition

1. Split 𝑇 into root-to-leaf paths.
2. Continue the path to the child

with the most descendants.

Any root-to-leaf path requires at
most 𝑂(log 𝑛) color changes.

1-Respect Algorithm

1. Iterate edge 𝑒 in heavy-light
decomposition order.

2. Keep track of non-tree edges 𝑢𝑣
that cross a cut at 𝑒.

Non-tree edge 𝑢𝑣 will transition on
or off the current cut 𝑂(log 𝑛) times.

⇒ 𝑂(𝑚 log 𝑛) time.

1-Respect Algorithm

⇒ 𝑂(𝑚 log 𝑛) time.

1. Iterate edge 𝑒 in heavy-light
decomposition order.

2. Keep track of non-tree edges 𝑢𝑣
that cross a cut at 𝑒.

Non-tree edge 𝑢𝑣 will transition on
or off the current cut 𝑂(log 𝑛) times.

1-Respect Algorithm

⇒ 𝑂(𝑚 log 𝑛) time.

1. Iterate edge 𝑒 in heavy-light
decomposition order.

2. Keep track of non-tree edges 𝑢𝑣
that cross a cut at 𝑒.

Non-tree edge 𝑢𝑣 will transition on
or off the current cut 𝑂(log 𝑛) times.

1-Respect Algorithm

⇒ 𝑂(𝑚 log 𝑛) time.

1. Iterate edge 𝑒 in heavy-light
decomposition order.

2. Keep track of non-tree edges 𝑢𝑣
that cross a cut at 𝑒.

Non-tree edge 𝑢𝑣 will transition on
or off the current cut 𝑂(log 𝑛) times.

1-Respect Algorithm

⇒ 𝑂(𝑚 log 𝑛) time.

1. Iterate edge 𝑒 in heavy-light
decomposition order.

2. Keep track of non-tree edges 𝑢𝑣
that cross a cut at 𝑒.

Non-tree edge 𝑢𝑣 will transition on
or off the current cut 𝑂(log 𝑛) times.

1-Respect Algorithm

⇒ 𝑂(𝑚 log 𝑛) time.

1. Iterate edge 𝑒 in heavy-light
decomposition order.

2. Keep track of non-tree edges 𝑢𝑣
that cross a cut at 𝑒.

Non-tree edge 𝑢𝑣 will transition on
or off the current cut 𝑂(log 𝑛) times.

1-Respect Algorithm

⇒ 𝑂(𝑚 log 𝑛) time.

1. Iterate edge 𝑒 in heavy-light
decomposition order.

2. Keep track of non-tree edges 𝑢𝑣
that cross a cut at 𝑒.

Non-tree edge 𝑢𝑣 will transition on
or off the current cut 𝑂(log 𝑛) times.

1-Respect Algorithm

⇒ 𝑂(𝑚 log 𝑛) time.

1. Iterate edge 𝑒 in heavy-light
decomposition order.

2. Keep track of non-tree edges 𝑢𝑣
that cross a cut at 𝑒.

Non-tree edge 𝑢𝑣 will transition on
or off the current cut 𝑂(log 𝑛) times.

1-Respect Algorithm

⇒ 𝑂(𝑚 log 𝑛) time.

1. Iterate edge 𝑒 in heavy-light
decomposition order.

2. Keep track of non-tree edges 𝑢𝑣
that cross a cut at 𝑒.

Non-tree edge 𝑢𝑣 will transition on
or off the current cut 𝑂(log 𝑛) times.

1-Respect Algorithm

⇒ 𝑂(𝑚 log 𝑛) time.

1. Iterate edge 𝑒 in heavy-light
decomposition order.

2. Keep track of non-tree edges 𝑢𝑣
that cross a cut at 𝑒.

Non-tree edge 𝑢𝑣 will transition on
or off the current cut 𝑂(log 𝑛) times.

1-Respect Algorithm

⇒ 𝑂(𝑚 log 𝑛) time.

1. Iterate edge 𝑒 in heavy-light
decomposition order.

2. Keep track of non-tree edges 𝑢𝑣
that cross a cut at 𝑒.

Non-tree edge 𝑢𝑣 will transition on
or off the current cut 𝑂(log 𝑛) times.

1-Respect Algorithm

⇒ 𝑂(𝑚 log 𝑛) time.

1. Iterate edge 𝑒 in heavy-light
decomposition order.

2. Keep track of non-tree edges 𝑢𝑣
that cross a cut at 𝑒.

Non-tree edge 𝑢𝑣 will transition on
or off the current cut 𝑂(log 𝑛) times.

1-Respect Algorithm

⇒ 𝑂(𝑚 log 𝑛) time.

1. Iterate edge 𝑒 in heavy-light
decomposition order.

2. Keep track of non-tree edges 𝑢𝑣
that cross a cut at 𝑒.

Non-tree edge 𝑢𝑣 will transition on
or off the current cut 𝑂(log 𝑛) times.

1-Respect Algorithm

⇒ 𝑂(𝑚 log 𝑛) time.

1. Iterate edge 𝑒 in heavy-light
decomposition order.

2. Keep track of non-tree edges 𝑢𝑣
that cross a cut at 𝑒.

Non-tree edge 𝑢𝑣 will transition on
or off the current cut 𝑂(log 𝑛) times.

1-Respect Algorithm

⇒ 𝑂(𝑚 log 𝑛) time.

1. Iterate edge 𝑒 in heavy-light
decomposition order.

2. Keep track of non-tree edges 𝑢𝑣
that cross a cut at 𝑒.

Non-tree edge 𝑢𝑣 will transition on
or off the current cut 𝑂(log 𝑛) times.

1-Respect Algorithm

⇒ 𝑂(𝑚 log 𝑛) time.

1. Iterate edge 𝑒 in heavy-light
decomposition order.

2. Keep track of non-tree edges 𝑢𝑣
that cross a cut at 𝑒.

Non-tree edge 𝑢𝑣 will transition on
or off the current cut 𝑂(log 𝑛) times.

1-Respect Algorithm

⇒ 𝑂(𝑚 log 𝑛) time.

1. Iterate edge 𝑒 in heavy-light
decomposition order.

2. Keep track of non-tree edges 𝑢𝑣
that cross a cut at 𝑒.

Non-tree edge 𝑢𝑣 will transition on
or off the current cut 𝑂(log 𝑛) times.

1-Respect Algorithm

⇒ 𝑂(𝑚 log 𝑛) time.

1. Iterate edge 𝑒 in heavy-light
decomposition order.

2. Keep track of non-tree edges 𝑢𝑣
that cross a cut at 𝑒.

Non-tree edge 𝑢𝑣 will transition on
or off the current cut 𝑂(log 𝑛) times.

1-Respect Algorithm

⇒ 𝑂(𝑚 log 𝑛) time.

1. Iterate edge 𝑒 in heavy-light
decomposition order.

2. Keep track of non-tree edges 𝑢𝑣
that cross a cut at 𝑒.

Non-tree edge 𝑢𝑣 will transition on
or off the current cut 𝑂(log 𝑛) times.

1-Respect Algorithm

⇒ 𝑂(𝑚 log 𝑛) time.

1. Iterate edge 𝑒 in heavy-light
decomposition order.

2. Keep track of non-tree edges 𝑢𝑣
that cross a cut at 𝑒.

Non-tree edge 𝑢𝑣 will transition on
or off the current cut 𝑂(log 𝑛) times.

2-Respect Algorithm

Given spanning tree 𝑇 of a graph 𝐺,
find a smallest cut of 𝐺 that cuts two
edges of 𝑇.

2-Respect Algorithm

When two edges of 𝑇 are cut, when
does a non-tree edge 𝑢𝑣 cross the cut?

2-Respect Algorithm

Non-tree edge 𝑢𝑣 is cut iff the cut in 𝐺
cuts exactly one edge on the 𝑢𝑣-path
in 𝑇.

When two edges of 𝑇 are cut, when
does a non-tree edge 𝑢𝑣 cross the cut?

2-Respect Algorithm

Non-tree edge 𝑢𝑣 is cut iff the cut in 𝐺
cuts exactly one edge on the 𝑢𝑣-path
in 𝑇.

When two edges of 𝑇 are cut, when
does a non-tree edge 𝑢𝑣 cross the cut?

2-Respect Algorithm

How can we leverage our 1-respect
strategy for cuts that cut two edges
of 𝑇?

We cannot spend Ω 𝑛! time
checking all cuts.

Top Tree Data Structure

Operations over a weighted tree 𝑇:
• 𝑃𝑎𝑡ℎ𝐴𝑑𝑑(𝑢, 𝑣, 𝑤) := add weight 𝑤 to all edges on the 𝑢𝑣-path in 𝑇.
• 𝑁𝑜𝑛𝑃𝑎𝑡ℎ𝐴𝑑𝑑(𝑢, 𝑣, 𝑤) := add weight 𝑤 to all edges not on the 𝑢𝑣-path in 𝑇.
• 𝑄𝑢𝑒𝑟𝑦𝑀𝑖𝑛𝑖𝑚𝑢𝑚() := Return the minimum weight edge in 𝑇.

All operations take
𝑂(log 𝑛) time.

Idea

Call the two tree edges that we cut 𝑒
and 𝑓. If we fix 𝑒, we can determine
which 𝑓 result in non-tree edge 𝑢𝑣
crossing the cut.

Idea

Call the two tree edges that we cut 𝑒
and 𝑓. If we fix 𝑒, we can determine
which 𝑓 result in non-tree edge 𝑢𝑣
crossing the cut.

• If 𝑒 is on the 𝑢𝑣-path, any 𝑓 off the
𝑢𝑣-path cut 𝑢𝑣.

Idea

Use top tree to find best 𝑓!

Call the two tree edges that we cut 𝑒
and 𝑓. If we fix 𝑒, we can determine
which 𝑓 result in non-tree edge 𝑢𝑣
crossing the cut.

• If 𝑒 is on the 𝑢𝑣-path, any 𝑓 off the
𝑢𝑣-path cut 𝑢𝑣.
• If 𝑒 is off the 𝑢𝑣-path, any 𝑓 on the
𝑢𝑣-path cut 𝑢𝑣.

2-Respect Algorithm

1. Iterate fixed tree-edge 𝑒 in heavy-
light decomposition order.

2. Keep track of the cost of cutting
any other edge 𝑓 in a top tree.

3. After 𝑒 is moved and the top tree
updated, query for best 𝑓.

⇒ 𝑂(𝑚 log! 𝑛) time.

2-Respect Algorithm

1. Iterate fixed tree-edge 𝑒 in heavy-
light decomposition order.

2. Keep track of the cost of cutting
any other edge 𝑓 in a top tree.

3. After 𝑒 is moved and the top tree
updated, query for best 𝑓.

⇒ 𝑂(𝑚 log! 𝑛) time.

2-Respect Algorithm

1. Iterate fixed tree-edge 𝑒 in heavy-
light decomposition order.

2. Keep track of the cost of cutting
any other edge 𝑓 in a top tree.

3. After 𝑒 is moved and the top tree
updated, query for best 𝑓.

⇒ 𝑂(𝑚 log! 𝑛) time.

2-Respect Algorithm

1. Iterate fixed tree-edge 𝑒 in heavy-
light decomposition order.

2. Keep track of the cost of cutting
any other edge 𝑓 in a top tree.

3. After 𝑒 is moved and the top tree
updated, query for best 𝑓.

⇒ 𝑂(𝑚 log! 𝑛) time.

2-Respect Algorithm

1. Iterate fixed tree-edge 𝑒 in heavy-
light decomposition order.

2. Keep track of the cost of cutting
any other edge 𝑓 in a top tree.

3. After 𝑒 is moved and the top tree
updated, query for best 𝑓.

⇒ 𝑂(𝑚 log! 𝑛) time.

2-Respect Algorithm

1. Iterate fixed tree-edge 𝑒 in heavy-
light decomposition order.

2. Keep track of the cost of cutting
any other edge 𝑓 in a top tree.

3. After 𝑒 is moved and the top tree
updated, query for best 𝑓.

⇒ 𝑂(𝑚 log! 𝑛) time.

2-Respect Algorithm

1. Iterate fixed tree-edge 𝑒 in heavy-
light decomposition order.

2. Keep track of the cost of cutting
any other edge 𝑓 in a top tree.

3. After 𝑒 is moved and the top tree
updated, query for best 𝑓.

⇒ 𝑂(𝑚 log! 𝑛) time.

2-Respect Algorithm

1. Iterate fixed tree-edge 𝑒 in heavy-
light decomposition order.

2. Keep track of the cost of cutting
any other edge 𝑓 in a top tree.

3. After 𝑒 is moved and the top tree
updated, query for best 𝑓.

⇒ 𝑂(𝑚 log! 𝑛) time.

2-Respect Algorithm

1. Iterate fixed tree-edge 𝑒 in heavy-
light decomposition order.

2. Keep track of the cost of cutting
any other edge 𝑓 in a top tree.

3. After 𝑒 is moved and the top tree
updated, query for best 𝑓.

⇒ 𝑂(𝑚 log! 𝑛) time.

Implementation

• Available at: https://github.com/nalinbhardwaj/min-cut-paper.
• About ~200 lines of code for the 2-respect algorithm.

https://github.com/nalinbhardwaj/min-cut-paper

Thanks!

Questions?

