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The Weighted Minimum Cut Problem

Given a graph 𝐺 on vertex set 𝑉, 
determine a nonempty vertex 
subset 𝑆 ⊆ 𝑉 such that the total 
weight of edges from 𝑆 to 𝑉 ∖ 𝑆 is 
minimized.
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The Weighted Minimum Cut Problem

Given a graph 𝐺 on vertex set 𝑉, 
determine a nonempty vertex 
subset 𝑆 ⊆ 𝑉 such that the total 
weight of edges from 𝑆 to 𝑉 ∖ 𝑆 is 
minimized.

The weight of the minimum cut is 
the total weight of the edges 
crossing the cut.
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Our Results

1. A simplification of Karger’s algorithm to find a smallest cut of 𝐺 that 
2-respects (cuts ≤ 2 edges of) a spanning tree 𝑇 of 𝐺.
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Our Results

Very Recent Work Result Citation
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1. A simplification of Karger’s algorithm to find a smallest cut of 𝐺 that 
2-respects (cuts ≤ 2 edges of) a spanning tree 𝑇 of 𝐺.

2. A self-contained version of Karger’s algorithm.
3. An implementation of our version of Karger’s algorithm.



Karger’s Near-Linear Time Algorithm

1. Sample edges of 𝐺.
2. Pack trees in the sampled graph.
3. Sample trees from the packing.
4. For each sampled tree 𝑇, 

determine a smallest cut of 𝐺
that cuts at most two edges of 𝑇.
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each with an assigned weight, so that 
the total weight of trees containing a 
given edge is no greater than the 
weight of that edge.

The weight of the packing is the total 
weight of the trees in it.
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Theorem: a packing of weight at least c/2
exists, where 𝑐 is the weight of the min cut.



Tree Packing

Definition: A set of spanning trees, 
each with an assigned weight, so that 
the total weight of trees containing a 
given edge is no greater than the 
weight of that edge.

The weight of the packing is the total 
weight of the trees in it.

Theorem: a packing of weight at least c/2
exists, where 𝑐 is the weight of the min cut.

Lemma: in a packing of 
weight ≥ 𝑐/2, each tree 
crosses the min cut at 
most twice on average.



Karger’s Near-Linear Time Algorithm

1. Sample edges of 𝐺.
2. Pack trees in the sampled graph.
3. Sample trees from the packing.
4. For each sampled tree 𝑇, 
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Karger’s Near-Linear Time Algorithm

1. Sample edges of 𝐺.
2. Pack trees in the sampled graph.
3. Sample trees from the packing.
4. For each sampled tree 𝑇, 

determine a smallest cut of 𝐺
that cuts at most two edges of 𝑇.

Can reduce to step 4.



1-Respect Algorithm

Given spanning tree 𝑇 of a 
graph 𝐺, find a smallest cut 
of 𝐺 that cuts one edge of 𝑇.
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𝐺 cuts an edge on the 𝑢𝑣-path in 𝑇.
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edges that cross a cut at 𝑒.
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1-Respect Algorithm

How to compute the size of all 
𝑛 − 1 cuts?

Idea: iterate an edge 𝑒 through 
𝑇, keeping track of non-tree 
edges that cross a cut at 𝑒.

Is there an order of edges 𝑒 that results in 
non-tree edges transitioning on and off 
the current cut a small number of times?



Heavy-Light Decomposition

1. Split 𝑇 into root-to-leaf paths.
2. Continue the path to the child 

with the most descendants.



Heavy-Light Decomposition

1. Split 𝑇 into root-to-leaf paths.
2. Continue the path to the child 

with the most descendants.

Any root-to-leaf path requires at 
most 𝑂(log 𝑛) color changes.



1-Respect Algorithm

1. Iterate edge 𝑒 in heavy-light 
decomposition order.

2. Keep track of non-tree edges 𝑢𝑣
that cross a cut at 𝑒.

Non-tree edge 𝑢𝑣 will transition on 
or off the current cut 𝑂(log 𝑛) times.

⇒ 𝑂(𝑚 log 𝑛) time.
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2-Respect Algorithm

Given spanning tree 𝑇 of a graph 𝐺, 
find a smallest cut of 𝐺 that cuts two 
edges of 𝑇.
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cuts exactly one edge on the 𝑢𝑣-path 
in 𝑇.
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2-Respect Algorithm

Non-tree edge 𝑢𝑣 is cut iff the cut in 𝐺
cuts exactly one edge on the 𝑢𝑣-path 
in 𝑇.

When two edges of 𝑇 are cut, when 
does a non-tree edge 𝑢𝑣 cross the cut?



2-Respect Algorithm

How can we leverage our 1-respect 
strategy for cuts that cut two edges 
of 𝑇?

We cannot spend Ω 𝑛! time 
checking all cuts.



Top Tree Data Structure

Operations over a weighted tree 𝑇:
• 𝑃𝑎𝑡ℎ𝐴𝑑𝑑(𝑢, 𝑣, 𝑤) := add weight 𝑤 to all edges on the 𝑢𝑣-path in 𝑇.
• 𝑁𝑜𝑛𝑃𝑎𝑡ℎ𝐴𝑑𝑑(𝑢, 𝑣, 𝑤) := add weight 𝑤 to all edges not on the 𝑢𝑣-path in 𝑇.
• 𝑄𝑢𝑒𝑟𝑦𝑀𝑖𝑛𝑖𝑚𝑢𝑚() := Return the minimum weight edge in 𝑇.

All operations take 
𝑂(log 𝑛) time.



Idea

Call the two tree edges that we cut 𝑒
and 𝑓. If we fix 𝑒, we can determine 
which 𝑓 result in non-tree edge 𝑢𝑣
crossing the cut.



Idea

Call the two tree edges that we cut 𝑒
and 𝑓. If we fix 𝑒, we can determine 
which 𝑓 result in non-tree edge 𝑢𝑣
crossing the cut.

• If 𝑒 is on the 𝑢𝑣-path, any 𝑓 off the 
𝑢𝑣-path cut 𝑢𝑣.



Idea

Use top tree to find best 𝑓!

Call the two tree edges that we cut 𝑒
and 𝑓. If we fix 𝑒, we can determine 
which 𝑓 result in non-tree edge 𝑢𝑣
crossing the cut.

• If 𝑒 is on the 𝑢𝑣-path, any 𝑓 off the 
𝑢𝑣-path cut 𝑢𝑣.
• If 𝑒 is off the 𝑢𝑣-path, any 𝑓 on the 
𝑢𝑣-path cut 𝑢𝑣.



2-Respect Algorithm

1. Iterate fixed tree-edge 𝑒 in heavy-
light decomposition order.

2. Keep track of the cost of cutting 
any other edge 𝑓 in a top tree.

3. After 𝑒 is moved and the top tree 
updated, query for best 𝑓.

⇒ 𝑂(𝑚 log! 𝑛) time.
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1. Iterate fixed tree-edge 𝑒 in heavy-
light decomposition order.

2. Keep track of the cost of cutting 
any other edge 𝑓 in a top tree.

3. After 𝑒 is moved and the top tree 
updated, query for best 𝑓.
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Implementation

• Available at: https://github.com/nalinbhardwaj/min-cut-paper.
• About ~200 lines of code for the 2-respect algorithm.

https://github.com/nalinbhardwaj/min-cut-paper


Thanks!

Questions?


