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Definition
A lattice is a partial order 𝐿 in which the 
set of elements larger than any 𝑥, 𝑦 ∈ 𝐿
are all larger than (or equal to) an 
element 𝑥 ∨ 𝑦 known as the join
of 𝑥 and 𝑦.

Similarly, the set of elements smaller than 
any 𝑥, 𝑦 ∈ 𝐿 all are smaller than (or equal 
to) an element 𝑥 ∧ 𝑦 known as the meet
of 𝑥 and 𝑦.
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Examples

Left: Lattice of the integer divisors of 60, 
ordered by divisibility.

Right: The Lattice 𝑁!.



The Lattice Problem
Design a space-efficient data structure over a lattice supporting the 
following operations:
• 𝑇𝑒𝑠𝑡𝑂𝑟𝑑𝑒𝑟(𝑥, 𝑦) := Return if 𝑥 ≤ 𝑦.
• 𝑀𝑒𝑒𝑡(𝑥, 𝑦) := Return the meet of 𝑥 and 𝑦.
• 𝐽𝑜𝑖𝑛(𝑥, 𝑦) := Return the join of 𝑥 and 𝑦.

Lower bound: There are 2!(# #) lattices on 𝑛 elements, therefore 
any lattice data structure must take Ω(𝑛 𝑛) bits.



Previous Work

Previous Work Result Citation

Store 𝑂(log 𝑛) bits for all pairs of 
elements

𝑂(𝑛") words of space, 𝑂(1) order
testing and meet/join.

Naïve Attempt 1

Store the transitive reduction graph 
(TRG)

𝑂(𝑛 𝑛) words of space, 𝑂(𝑛) order 
testing and meet/join.

Naïve Attempt 2

Efficient Implementation of Lattice 
Operations

Heuristic, Ω(𝑛") space in worst-case. Aït-Kaci et al., TOPLAS ‘89

An Efficient Data Structure for Lattice 
Operations

Claimed 𝑂 𝑛 𝑛 words of space, 𝑂(1)
order testing, 𝑂 𝑛 meet/join. 
Incorrect.

Talamo & Vocca, SICOMP 
‘99

Time and Space Efficient 
Representations of Distributive Lattices

𝑂 𝑛 log 𝑛 bits of space, 𝑂(log 𝑛) meet/ 
join if the lattice is distributive.

Munro & Sinnamon, SODA 
‘18



Our Results

1st Data Structure:
• 𝑂(𝑛 𝑛) words of space.
• 𝑂(1) time 𝑇𝑒𝑠𝑡𝑂𝑟𝑑𝑒𝑟 𝑥, 𝑦 .
• 𝑂(𝑛%/') time 𝑀𝑒𝑒𝑡 𝑥, 𝑦 and 
𝐽𝑜𝑖𝑛(𝑥, 𝑦).

2nd Data Structure, for any 𝑐 ∈ (
)
, 1 :

• 𝑂(𝑛(*+) words of space.
• 𝑂(𝑛(,+/)) Hme 𝑀𝑒𝑒𝑡 𝑥, 𝑦 and 
𝐽𝑜𝑖𝑛(𝑥, 𝑦).

3rd Data Structure, where 𝑑 is the 
maximum degree in the TRG of 𝐿:
• 𝑂(𝑛 𝑛) words of space.

• 𝑂 - ./0 #
./0 -

time 𝑀𝑒𝑒𝑡 𝑥, 𝑦 and 
𝐽𝑜𝑖𝑛(𝑥, 𝑦).

We will refer to space complexity 
in words for the rest of the talk



Intuition

• Break 𝐿 into smaller blocks.

• Store information within each 
block and between a block and the 
rest of 𝐿.

• Goal: 𝑛 blocks of 𝑛 elements 
each.



Block Decomposition

• Use the set of elements below an 
element, ℎ, as a block 𝐵.
• Choose ℎ so that | ↓ ℎ| is smallest 

possible while satisfying | ↓ ℎ| ≥ 𝑛.

Implication 1:
All 𝑥 ∈ 𝐵, 𝑥 ≠ ℎ, satisfy | ↓ 𝑥 ∩ 𝐵| < 𝑛.



Block Decomposition

• Recurse on 𝐿\ ↓h to form blocks 
𝐵(, 𝐵), …, 𝐵1, and 𝐵234.
• All blocks other than 𝐵234 have at 

least 𝑛 elements.
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Implication 2:
There are 𝑂( 𝑛) blocks.



Information Stored – Order Testing

(𝒜):  For every element 𝑥, store 𝑥 ∧ ℎ5, where 1 ≤ 𝑖 ≤ 𝑚.
(ℬ):   For an element 𝑥 ∈ 𝐵5, store ↓ 𝑥 ∩ 𝐵5 in a dictionary.
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Space Complexity:
(𝒜):  𝑂(𝑛 𝑛) by Implication 2.
(ℬ):   𝑂(𝑛 𝑛) for 𝑥 ∉ {ℎ5} by 
Implication 1; 𝑂(𝑛) for {ℎ5}.



Order Testing: 𝑥 ≤ 𝑦?

1. Suppose 𝑥 ∈ 𝐵5. Compute 𝑦 ∧ ℎ5.
2. Report YES iff 𝑥 ∈ ↓ 𝑦 ∧ ℎ5 ∩ 𝐵5 .

Time Complexity:
1. 𝑂(1) via (𝒜). 
2. 𝑂(1) via (ℬ).



Meets and Joins – Intuition

• Focus on meet.
• The meet can be in any of the 𝑂( 𝑛)

blocks. We must check them all.



Meet

Suppose 𝑥 ∧ 𝑦 ∈ 𝐵5 .

Then 𝑥 ∧ 𝑦 = 𝑥 ∧ ℎ5 ∧ (𝑦 ∧ ℎ5).



Meet Algorithm



Meet Algorithm

1. Compute 𝑥 ∧ ℎ5 and 𝑦 ∧ ℎ5 for all 𝑖.
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Meet Algorithm

1. Compute 𝑥 ∧ ℎ5 and 𝑦 ∧ ℎ5 for all 𝑖.
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How to do 
step 2 

efficiently?



Recurse!

• Subdivide each block 𝐵5 into subblocks 
𝑆5,(, 𝑆5,), …, 𝑆5,ℓ! and residual subblock 𝑆5,234.

• Choose subblock size |𝐵5|.
(𝒞):  Store the meets of all pairs of elements 

in each 𝑆5,8.

Space Complexity:
Recursion:  𝑂 ∑5 𝐵5 (.: = 𝑂(𝑛 𝑛).
(𝒞): 𝑂 ∑5,8 𝑆5,8

)
= 𝑂 𝑛 𝑛 by Implication 1.



Meet Time Complexity

1. Compute 𝑥 ∧ 𝑔5 and 𝑦 ∧ 𝑔5 for all 𝑖.
2. Compute 𝑧5 = 𝑥 ∧ 𝑔5 ∧ (𝑦 ∧ 𝑔5) for all 𝑖.
3. If 𝑥, 𝑦 ∈ 𝑆5,234, find ↓ 𝑥 ∩↓ 𝑦 ∩ 𝑆5,234.
4. Return the largest element found in 2 or 3.

1. 𝑂( |𝐵5|).
2. 𝑂( |𝐵5|) via (𝒞).
3. 𝑂( |𝐵5|).
4. 𝑂( |𝐵5|).

Meet in block 𝑩𝒊: Meet in 𝑳:



Meet Time Complexity

1. Compute 𝑥 ∧ ℎ5 and 𝑦 ∧ ℎ5 for all 𝑖.
2. Compute 𝑧5 = 𝑥 ∧ ℎ5 ∧ (𝑦 ∧ ℎ5) for all 𝑖.
3. If 𝑥, 𝑦 ∈ 𝐵234, find ↓ 𝑥 ∩↓ 𝑦 ∩ 𝐵234.
4. Return the largest element found in 2 or 3.

Meet in block 𝑩𝒊:
1. 𝑂( |𝐵5|).
2. 𝑂( |𝐵5|) via (𝒞).
3. 𝑂( |𝐵5|).
4. 𝑂( |𝐵5|).

1. 𝑂( 𝑛) via (𝒜). 
2. 𝑂 ∑5 |𝐵5|
3. 𝑂( 𝑛) via (ℬ). 
4. 𝑂( 𝑛).

= 𝑂(𝑛%/')
by Jensen’s
Inequality

Meet in 𝑳:



Thanks!

Questions?


