Space-Efficient Data Structures for Lattices

J. Ian Munro – University of Waterloo Bryce Sandlund – University of Waterloo Corwin Sinnamon – Princeton University

Definition

A lattice is a partial order L in which the set of elements larger than any $x, y \in L$ are all larger than (or equal to) an element $x \lor y$ known as the join of x and y.

Similarly, the set of elements smaller than any $x, y \in L$ all are smaller than (or equal to) an element $x \land y$ known as the meet of x and y.

Examples

Left: Lattice of the integer divisors of 60, ordered by divisibility.

Right: The Lattice N_5 .

The Lattice Problem

Design a space-efficient data structure over a lattice supporting the following operations:

- $TestOrder(x, y) := \text{Return if } x \le y.$
- Meet(x, y) := Return the meet of x and y.
- Join(x, y) := Return the join of x and y.

Lower bound: There are $2^{\theta(n\sqrt{n})}$ lattices on n elements, therefore any lattice data structure must take $\Omega(n\sqrt{n})$ bits.

Previous Work

Previous Work	Result	Citation
Store $O(\log n)$ bits for all pairs of elements	$O(n^2)$ words of space, $O(1)$ order testing and meet/join.	Naïve Attempt 1
Store the transitive reduction graph (TRG)	$O(n\sqrt{n})$ words of space, $O(n)$ order testing and meet/join.	Naïve Attempt 2
Efficient Implementation of Lattice Operations	Heuristic, $\Omega(n^2)$ space in worst-case.	Aït-Kaci et al., TOPLAS '89
An Efficient Data Structure for Lattice Operations	Claimed $O(n\sqrt{n})$ words of space, $O(1)$ order testing, $O(\sqrt{n})$ meet/join. Incorrect.	Talamo & Vocca, SICOMP '99
Time and Space Efficient Representations of Distributive Lattices	$O(n \log n)$ bits of space, $O(\log n)$ meet/ join if the lattice is <i>distributive</i> .	Munro & Sinnamon, SODA '18

Our Results

1st Data Structure:

- $O(n\sqrt{n})$ words of space.
- O(1) time TestOrder(x, y).
- $O(n^{3/4})$ time Meet(x, y) and Join(x, y).

2nd Data Structure, for any
$$c \in \left[\frac{1}{2}, 1\right]$$
:

- $O(n^{1+c})$ words of space.
- $O(n^{1-c/2})$ time Meet(x, y) and Join(x, y).

 3^{rd} Data Structure, where d is the maximum degree in the TRG of L:

- $O(n\sqrt{n})$ words of space.
- $O\left(\frac{d \log n}{\log d}\right)$ time Meet(x, y) and Join(x, y).

We will refer to space complexity in words for the rest of the talk

Intuition

- Break L into smaller blocks.
- Store information within each block and between a block and the rest of *L*.
- Goal: \sqrt{n} blocks of \sqrt{n} elements each.

Block Decomposition

- Use the set of elements below an element, *h*, as a block *B*.
- Choose h so that $|\downarrow h|$ is smallest possible while satisfying $|\downarrow h| \ge \sqrt{n}$.

Implication 1: All $x \in B$, $x \neq h$, satisfy $|\downarrow x \cap B| < \sqrt{n}$.

Block Decomposition

- Recurse on $L \setminus \downarrow$ h to form blocks $B_1, B_2, ..., B_m$, and B_{res} .
- All blocks other than B_{res} have at least \sqrt{n} elements.

Implication 2: There are $O(\sqrt{n})$ blocks.

Information Stored – Order Testing

(\mathcal{A}): For every element x, store $x \wedge h_i$, where $1 \leq i \leq m$. (\mathcal{B}): For an element $x \in B_i$, store $\downarrow x \cap B_i$ in a dictionary.

Space Complexity:

(\mathcal{A}): $O(n\sqrt{n})$ by Implication 2. (\mathcal{B}): $O(n\sqrt{n})$ for $x \notin \{h_i\}$ by Implication 1; O(n) for $\{h_i\}$.

Order Testing: $x \le y$?

- 1. Suppose $x \in B_i$. Compute $y \wedge h_i$.
- 2. Report YES iff $x \in (\downarrow y \land h_i) \cap B_i$.

Time Complexity:

1. O(1) via (\mathcal{A}). 2. O(1) via (\mathcal{B}).

Meets and Joins – Intuition

- Focus on meet.
- The meet can be in any of the $O(\sqrt{n})$ blocks. We must check them all.

Meet

Suppose $x \land y \in B_i$.

Then
$$x \wedge y = (x \wedge h_i) \wedge (y \wedge h_i)$$
.

1. Compute $x \wedge h_i$ and $y \wedge h_i$ for all *i*.

- 1. Compute $x \wedge h_i$ and $y \wedge h_i$ for all *i*.
- 2. Compute $z_i = (x \land h_i) \land (y \land h_i)$ for all *i*.

- 1. Compute $x \wedge h_i$ and $y \wedge h_i$ for all *i*.
- 2. Compute $z_i = (x \land h_i) \land (y \land h_i)$ for all *i*.
- 3. If $x, y \in B_{res}$, find $\downarrow x \cap \downarrow y \cap B_{res}$.

- 1. Compute $x \wedge h_i$ and $y \wedge h_i$ for all *i*.
- 2. Compute $z_i = (x \land h_i) \land (y \land h_i)$ for all *i*.
- 3. If $x, y \in B_{res}$, find $\downarrow x \cap \downarrow y \cap B_{res}$.

- 1. Compute $x \wedge h_i$ and $y \wedge h_i$ for all *i*.
- 2. Compute $z_i = (x \land h_i) \land (y \land h_i)$ for all *i*.
- 3. If $x, y \in B_{res}$, find $\downarrow x \cap \downarrow y \cap B_{res}$.
- 4. Return the largest element found in 2 or 3.

Time Complexity:

- 1. $O(\sqrt{n})$ by Implication 2 and (\mathcal{A}).
- 2. TBD.
- 3. $O(\sqrt{n})$ by Implication 1 and (\mathcal{B}).
- 4. $O(\sqrt{n})$.

- 1. Compute $x \wedge h_i$ and $y \wedge h_i$ for all *i*.
- 2. Compute $z_i = (x \land h_i) \land (y \land h_i)$ for all *i*.
- 3. If $x, y \in B_{res}$, find $\downarrow x \cap \downarrow y \cap B_{res}$.
- 4. Return the largest element found in 2 or 3.

Time Complexity:

- 1. $O(\sqrt{n})$ by Implication 2 and (\mathcal{A}).
- 2. TBD.
- 3. $O(\sqrt{n})$ by Implication 1 and (\mathcal{B}). 4. $O(\sqrt{n})$.

Recurse!

- Subdivide each block B_i into subblocks $S_{i,1}, S_{i,2}, ..., S_{i,\ell_i}$ and residual subblock $S_{i,res}$.
- Choose subblock size $\sqrt{|B_i|}$.
- (C): Store the meets of all pairs of elements in each $S_{i,j}$.

Space Complexity:

Recursion:
$$O(\sum_{i} |B_{i}|^{1.5}) = O(n\sqrt{n}).$$

(C): $O\left(\sum_{i,j} |S_{i,j}|^{2}\right) = O(n\sqrt{n})$ by Implication 1

Meet Time Complexity

- 1. Compute $x \wedge g_i$ and $y \wedge g_i$ for all *i*.
- 2. Compute $z_i = (x \land g_i) \land (y \land g_i)$ for all *i*.
- 3. If $x, y \in S_{i,res}$, find $\downarrow x \cap \downarrow y \cap S_{i,res}$.
- 4. Return the largest element found in 2 or 3.

Meet in block B_i : Meet in L:

- 1. $O(\sqrt{|B_i|}).$
- 2. $O(\sqrt{|B_i|})$ via (\mathcal{C}).
- 3. $O(\sqrt{|B_i|})$.
- 4. $O(\sqrt{|B_i|})$.

Meet Time Complexity

- 1. Compute $x \wedge h_i$ and $y \wedge h_i$ for all *i*.
- 2. Compute $z_i = (x \land h_i) \land (y \land h_i)$ for all *i*.
- 3. If $x, y \in B_{res}$, find $\downarrow x \cap \downarrow y \cap B_{res}$.
- 4. Return the largest element found in 2 or 3.

Meet in block B_i :Meet in L:1. $O(\sqrt{|B_i|})$.1. $O(\sqrt{n})$ via (\mathcal{A}) .2. $O(\sqrt{|B_i|})$ via (\mathcal{C}) .2. $O(\sum_i \sqrt{|B_i|}) = O(n^{3/4})$ 3. $O(\sqrt{|B_i|})$.3. $O(\sqrt{n})$ via (\mathcal{B}) . by Jense4. $O(\sqrt{|B_i|})$.4. $O(\sqrt{n})$.

Thanks!

Questions?