
Space-Efficient Data
Structures for Lattices

J. Ian Munro – University of Waterloo
Bryce Sandlund – University of Waterloo
Corwin Sinnamon – Princeton University

Definition
A lattice is a partial order 𝐿 in which the
set of elements larger than any 𝑥, 𝑦 ∈ 𝐿
are all larger than (or equal to) an
element 𝑥 ∨ 𝑦 known as the join
of 𝑥 and 𝑦.

Similarly, the set of elements smaller than
any 𝑥, 𝑦 ∈ 𝐿 all are smaller than (or equal
to) an element 𝑥 ∧ 𝑦 known as the meet
of 𝑥 and 𝑦.

x y

x ^ y

x _ y

#x #y
#x\ #y

"x "y
"x\ "y

Examples

Left: Lattice of the integer divisors of 60,
ordered by divisibility.

Right: The Lattice 𝑁!.

The Lattice Problem
Design a space-efficient data structure over a lattice supporting the
following operations:
• 𝑇𝑒𝑠𝑡𝑂𝑟𝑑𝑒𝑟(𝑥, 𝑦) := Return if 𝑥 ≤ 𝑦.
• 𝑀𝑒𝑒𝑡(𝑥, 𝑦) := Return the meet of 𝑥 and 𝑦.
• 𝐽𝑜𝑖𝑛(𝑥, 𝑦) := Return the join of 𝑥 and 𝑦.

Lower bound: There are 2!(# #) lattices on 𝑛 elements, therefore
any lattice data structure must take Ω(𝑛 𝑛) bits.

Previous Work

Previous Work Result Citation

Store 𝑂(log 𝑛) bits for all pairs of
elements

𝑂(𝑛") words of space, 𝑂(1) order
testing and meet/join.

Naïve Attempt 1

Store the transitive reduction graph
(TRG)

𝑂(𝑛 𝑛) words of space, 𝑂(𝑛) order
testing and meet/join.

Naïve Attempt 2

Efficient Implementation of Lattice
Operations

Heuristic, Ω(𝑛") space in worst-case. Aït-Kaci et al., TOPLAS ‘89

An Efficient Data Structure for Lattice
Operations

Claimed 𝑂 𝑛 𝑛 words of space, 𝑂(1)
order testing, 𝑂 𝑛 meet/join.
Incorrect.

Talamo & Vocca, SICOMP
‘99

Time and Space Efficient
Representations of Distributive Lattices

𝑂 𝑛 log 𝑛 bits of space, 𝑂(log 𝑛) meet/
join if the lattice is distributive.

Munro & Sinnamon, SODA
‘18

Our Results

1st Data Structure:
• 𝑂(𝑛 𝑛) words of space.
• 𝑂(1) time 𝑇𝑒𝑠𝑡𝑂𝑟𝑑𝑒𝑟 𝑥, 𝑦 .
• 𝑂(𝑛%/') time 𝑀𝑒𝑒𝑡 𝑥, 𝑦 and
𝐽𝑜𝑖𝑛(𝑥, 𝑦).

2nd Data Structure, for any 𝑐 ∈ (
)
, 1 :

• 𝑂(𝑛(*+) words of space.
• 𝑂(𝑛(,+/)) Hme 𝑀𝑒𝑒𝑡 𝑥, 𝑦 and
𝐽𝑜𝑖𝑛(𝑥, 𝑦).

3rd Data Structure, where 𝑑 is the
maximum degree in the TRG of 𝐿:
• 𝑂(𝑛 𝑛) words of space.

• 𝑂 - ./0 #
./0 -

time 𝑀𝑒𝑒𝑡 𝑥, 𝑦 and
𝐽𝑜𝑖𝑛(𝑥, 𝑦).

We will refer to space complexity
in words for the rest of the talk

Intuition

• Break 𝐿 into smaller blocks.

• Store information within each
block and between a block and the
rest of 𝐿.

• Goal: 𝑛 blocks of 𝑛 elements
each.

Block Decomposition

• Use the set of elements below an
element, ℎ, as a block 𝐵.
• Choose ℎ so that | ↓ ℎ| is smallest

possible while satisfying | ↓ ℎ| ≥ 𝑛.

Implication 1:
All 𝑥 ∈ 𝐵, 𝑥 ≠ ℎ, satisfy | ↓ 𝑥 ∩ 𝐵| < 𝑛.

Block Decomposition

• Recurse on 𝐿\ ↓h to form blocks
𝐵(, 𝐵), …, 𝐵1, and 𝐵234.
• All blocks other than 𝐵234 have at

least 𝑛 elements.

Bres

B1B2

B3
B4

B5

B6

h1
h2

h3h4

h5

h6

Implication 2:
There are 𝑂(𝑛) blocks.

Information Stored – Order Testing

(𝒜): For every element 𝑥, store 𝑥 ∧ ℎ5, where 1 ≤ 𝑖 ≤ 𝑚.
(ℬ): For an element 𝑥 ∈ 𝐵5, store ↓ 𝑥 ∩ 𝐵5 in a dictionary.

Bi

hi x(A)

x ^ hi| {z }

hi

x

(B)

Bi

#y \ Bi· · · · · ·

y

#x \ Bi

Space Complexity:
(𝒜): 𝑂(𝑛 𝑛) by Implication 2.
(ℬ): 𝑂(𝑛 𝑛) for 𝑥 ∉ {ℎ5} by
Implication 1; 𝑂(𝑛) for {ℎ5}.

Order Testing: 𝑥 ≤ 𝑦?

1. Suppose 𝑥 ∈ 𝐵5. Compute 𝑦 ∧ ℎ5.
2. Report YES iff 𝑥 ∈ ↓ 𝑦 ∧ ℎ5 ∩ 𝐵5 .

Time Complexity:
1. 𝑂(1) via (𝒜).
2. 𝑂(1) via (ℬ).

Meets and Joins – Intuition

• Focus on meet.
• The meet can be in any of the 𝑂(𝑛)

blocks. We must check them all.

Meet

Suppose 𝑥 ∧ 𝑦 ∈ 𝐵5 .

Then 𝑥 ∧ 𝑦 = 𝑥 ∧ ℎ5 ∧ (𝑦 ∧ ℎ5).

Meet Algorithm

Meet Algorithm

1. Compute 𝑥 ∧ ℎ5 and 𝑦 ∧ ℎ5 for all 𝑖.

Meet Algorithm

1. Compute 𝑥 ∧ ℎ5 and 𝑦 ∧ ℎ5 for all 𝑖.
2. Compute 𝑧5 = 𝑥 ∧ ℎ5 ∧ (𝑦 ∧ ℎ5) for all 𝑖.

Meet Algorithm

1. Compute 𝑥 ∧ ℎ5 and 𝑦 ∧ ℎ5 for all 𝑖.
2. Compute 𝑧5 = 𝑥 ∧ ℎ5 ∧ (𝑦 ∧ ℎ5) for all 𝑖.
3. If 𝑥, 𝑦 ∈ 𝐵234, find ↓ 𝑥 ∩↓ 𝑦 ∩ 𝐵234.

Meet Algorithm

1. Compute 𝑥 ∧ ℎ5 and 𝑦 ∧ ℎ5 for all 𝑖.
2. Compute 𝑧5 = 𝑥 ∧ ℎ5 ∧ (𝑦 ∧ ℎ5) for all 𝑖.
3. If 𝑥, 𝑦 ∈ 𝐵234, find ↓ 𝑥 ∩↓ 𝑦 ∩ 𝐵234.

Meet Algorithm

1. Compute 𝑥 ∧ ℎ5 and 𝑦 ∧ ℎ5 for all 𝑖.
2. Compute 𝑧5 = 𝑥 ∧ ℎ5 ∧ (𝑦 ∧ ℎ5) for all 𝑖.
3. If 𝑥, 𝑦 ∈ 𝐵234, find ↓ 𝑥 ∩↓ 𝑦 ∩ 𝐵234.
4. Return the largest element found in 2 or 3.

Time Complexity:
1. 𝑂 𝑛 by Implication 2 and (𝒜).
2. TBD.
3. 𝑂 𝑛 by Implication 1 and (ℬ).
4. 𝑂(𝑛).

Meet Algorithm

1. Compute 𝑥 ∧ ℎ5 and 𝑦 ∧ ℎ5 for all 𝑖.
2. Compute 𝑧5 = 𝑥 ∧ ℎ5 ∧ (𝑦 ∧ ℎ5) for all 𝑖.
3. If 𝑥, 𝑦 ∈ 𝐵234, find ↓ 𝑥 ∩↓ 𝑦 ∩ 𝐵234.
4. Return the largest element found in 2 or 3.

Time Complexity:
1. 𝑂 𝑛 by Implication 2 and (𝒜).
2. TBD.
3. 𝑂 𝑛 by Implication 1 and (ℬ).
4. 𝑂(𝑛).

How to do
step 2

efficiently?

Recurse!

• Subdivide each block 𝐵5 into subblocks
𝑆5,(, 𝑆5,), …, 𝑆5,ℓ! and residual subblock 𝑆5,234.

• Choose subblock size |𝐵5|.
(𝒞): Store the meets of all pairs of elements

in each 𝑆5,8.

Space Complexity:
Recursion: 𝑂 ∑5 𝐵5 (.: = 𝑂(𝑛 𝑛).
(𝒞): 𝑂 ∑5,8 𝑆5,8

)
= 𝑂 𝑛 𝑛 by Implication 1.

Meet Time Complexity

1. Compute 𝑥 ∧ 𝑔5 and 𝑦 ∧ 𝑔5 for all 𝑖.
2. Compute 𝑧5 = 𝑥 ∧ 𝑔5 ∧ (𝑦 ∧ 𝑔5) for all 𝑖.
3. If 𝑥, 𝑦 ∈ 𝑆5,234, find ↓ 𝑥 ∩↓ 𝑦 ∩ 𝑆5,234.
4. Return the largest element found in 2 or 3.

1. 𝑂(|𝐵5|).
2. 𝑂(|𝐵5|) via (𝒞).
3. 𝑂(|𝐵5|).
4. 𝑂(|𝐵5|).

Meet in block 𝑩𝒊: Meet in 𝑳:

Meet Time Complexity

1. Compute 𝑥 ∧ ℎ5 and 𝑦 ∧ ℎ5 for all 𝑖.
2. Compute 𝑧5 = 𝑥 ∧ ℎ5 ∧ (𝑦 ∧ ℎ5) for all 𝑖.
3. If 𝑥, 𝑦 ∈ 𝐵234, find ↓ 𝑥 ∩↓ 𝑦 ∩ 𝐵234.
4. Return the largest element found in 2 or 3.

Meet in block 𝑩𝒊:
1. 𝑂(|𝐵5|).
2. 𝑂(|𝐵5|) via (𝒞).
3. 𝑂(|𝐵5|).
4. 𝑂(|𝐵5|).

1. 𝑂(𝑛) via (𝒜).
2. 𝑂 ∑5 |𝐵5|
3. 𝑂(𝑛) via (ℬ).
4. 𝑂(𝑛).

= 𝑂(𝑛%/')
by Jensen’s
Inequality

Meet in 𝑳:

Thanks!

Questions?

